Optimized Trace Transform Based Feature Extraction Architecture for CBIR

  • M. Meena
  • K. Pramod
  • K. Linganagouda
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


The feature extraction and similarity measure of CBIR algorithms involve highly computation intensive and repetitive operations on a large data set yet have to satisfy the real time application requirements. One way to supplement software approaches for this purpose is to provide hardware support to the system architecture. We propose an algorithm and architecture for hardware implementation of trace transform based feature extraction for CBIR system. The proposed algorithm is focused to reduce the computational complexity in the addressing block for trace based feature extraction and is also optimized for memory consumption and speed for distance calculations in the similarity measure phase. Synthesis results show that the above measures are responsible for reducing the response time of the retrieval process by being able to process 2725 images per sec.


Content Based Image Retrieval Trace Transform FPGA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the new age. ACM Computing Surveys 40(2), Article 5 (April 2008), doi:10.1145/1348246.1348248Google Scholar
  2. 2.
    Nakano, K., Takamichi, E.: An image retrieval system using FPGAs. In: Asia and South Pacific Design Automation Conference (ASP-DAC 2003), pp. 370–373. ACM, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Kotoulas, L., Andreadis, I.: Colour histogram content-based image retrieval and hardware implementation. IEEE Proc.-Circuits Devices Syst. 150(5), 387–393 (2003)CrossRefGoogle Scholar
  4. 4.
    Chikhi, R., Derrien, S., Noumsi, A., Quinton, P.: Combining Flash Memory and FPGAs to Efficiently Implement a Massively Parallel Algorithm for Content-Based Image Retrieval. In: Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419, pp. 247–258. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Konstantinos, Georgios, Ioannis: Design and implementation of a fuzzy-modified ant colony hardware structure for image retrieval. Trans. Sys. Man Cyber. Part C 39(5), 520–533 (2009)CrossRefGoogle Scholar
  6. 6.
    Daubechies: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Choi, H., Baraniuk, R.: Multiscale Texture Segmentation Using Wavelet-Domain Hidden Markov Models. In: Proc. 32nd Asilomar Conf. Signals, Systems, and Computers, vol. 2, pp. 1692–1697 (1998)Google Scholar
  8. 8.
    Laine, A., Fan, J.: Texture Classification by Wavelet Packet Signature. IEEE Trans. Pattern Analysis and Machine Intelligence 15(11), 1,186–1,191 (1993)CrossRefGoogle Scholar
  9. 9.
    Xiang, L.: CBIR approach to building image retrieval based on invariant characteristics in Hough domain. In: IEEE ICASSP, pp. 1209–1212 (2008)Google Scholar
  10. 10.
    Xiong, W., Ong, S.H., Lee, W., Foong, K.: Local Radon Transform and Earth Mover’s Distances for Content-Based Image Retrieval. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 436–445. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Vieux, R., Benois-Pineau, J., Domenger, J.-P., Braquelaire, A.: ESPI Image Indexing and Similarity Search in Radon Transform Domain. In: IEEE Seventh International Workshop on Content Based Multimedia Indexing, pp. 231–236 (2009)Google Scholar
  12. 12.
    Ou, Y., Rhee, K.H.: A Key-Dependent Secure Image hashing Scheme by Using Radon Transform. In: IEEE International Symposium on Intelligent Signal Processing Communication Systems(ISPACS), pp. 595–598 (2009)Google Scholar
  13. 13.
    Kadyrov, A., Petrou, M.: The Trace Transform and Its Applications. IEEE Trans. PAMI 23(8), 811–828 (2001)CrossRefGoogle Scholar
  14. 14.
    Kadyrov, A., Petrou, M.: Object Signatures Invariant to Affine Distortion Derived from Trace Transform. Image and Vision Computing 21, 1135–1143 (2003)CrossRefGoogle Scholar
  15. 15.
    Meena, S.M., Linganagouda, K.: Implementaion and Analysis of optimized architectures for rank order filter. Journal of Real-Time Image Proc. 3, 33–41 (2008)CrossRefGoogle Scholar
  16. 16.
    Fahmy, S.A., Boungains, C.-S., Cheung, P.Y.K., Wayne Luk, J.: Real-Time Hardware Accelration of The Trace Transform. Journal of Real-Time Image Proc. 2, 235–248 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Meena
    • 1
  • K. Pramod
    • 1
  • K. Linganagouda
    • 1
  1. 1.Department of Electronics and CommunicationB.V. Bhoomaraddi College of Engineering and TechnologyHubli

Personalised recommendations