A Fuzzy Neuro Clustering Based Vector Quantization for Face Recognition

  • Elizabeth B. Varghese
  • M. Wilscy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. In this paper, an improved codebook design method is proposed for Vector Quantization (VQ)-based face recognition which improves recognition accuracy. A codebook is created by combining a systematically organized codebook based on the classification of code patterns and another codebook created by Integrated Adaptive Fuzzy Clustering (IAFC) method. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database and Yale database. Experimental results show face recognition using the proposed codebook is more efficient yielding a rate of 99.25% for AT & T and 98.18% for Yale which is higher than most of the existing methods.


Face Recognition Vector Quantization Codebook Integrated Adaptive Fuzzy Clustering Self Organization Map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  2. 2.
    Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, New York (2005)zbMATHGoogle Scholar
  3. 3.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  4. 4.
    Belhumeur, P.N., Hespanh, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces. Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  5. 5.
    Moghaddam, B., Nastar, C., Pentland, A.: A Bayesian similarity measure for direct image matching. In: Proceedings, International Conference on Pattern Recognition (1996)Google Scholar
  6. 6.
    Phillips, P.J.: Support vector machines applied to face fecognition. Advanced Neural Information Processing Systems 11, 803–809 (1998)Google Scholar
  7. 7.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  8. 8.
    Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)CrossRefGoogle Scholar
  9. 9.
    Penev, P.S., Atick, J.J.: Local Feature Analysis: A general statistical theory for object representation. Network: Computation in Neural Systems 7(3), 477–500 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goudail, F., Lange, E., Iwamoto, T., Kyuma, K., Otsu, N.: Face recognition system using local autocorrelations and multiscale integration. IEEE Transaction on Pattern Analysis and Machine Intelligence 18(10), 1024–1028 (1996)CrossRefGoogle Scholar
  11. 11.
    Kotani, K., Chen, Q., Ohmi, T.: Face recognition using vector quantization histogram method. In: Proceedings of the 2002 Int. Conf. on Image Processing vol. II(III), pp. II–105–II–108 (2002)Google Scholar
  12. 12.
    Chen, Q., Kotani, K., Lee, F.F., Ohmi, T.: A VQ based fast face recognition algorithmn using optimized codebook. In: Proeedings of the 2008 Int. Conf. on Wavelet Analysis and Pattern Recognition (2008)Google Scholar
  13. 13.
    Sayood, K.: Introduction to Data Compression. Morgan Kaufmann, San Francisco (2000)zbMATHGoogle Scholar
  14. 14.
    Nakayama, T., Konda, M., Takeuchi, K., Kotani, K., Ohmi, T.: Still image compression with adaptive resolution vector quantization technique. Int. Journal of Intelligent Automation and Soft Computing 10(2), 155–166 (2004)CrossRefGoogle Scholar
  15. 15.
    Chen, Q., Kotani, K., Lee, F.F., Ohmi, T.: Face recognition using codebook designed by code classification. In: IEEE Int. Conf. on Signal and Image Processing, pp. 397–401 (2006)Google Scholar
  16. 16.
    Kohonen, T.: The Self-Organizing Maps. Proceedings of the IEEE 78(9) (September 1990)Google Scholar
  17. 17.
    Kim, Y.S., Mitra, S.: An adaptive integrated fuzzy clustering model for pattern recognition. Journal Fuzzy Sets and Systems (65), 297–310 (1994)Google Scholar
  18. 18.
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elizabeth B. Varghese
    • 1
  • M. Wilscy
    • 1
  1. 1.Department of Computer ScienceUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations