Advertisement

Gaussian Noise and Haar Wavelet Transform Image Compression on Transmission of Dermatological Images

  • Kamil Dimililer
  • Cemal Kavalcıoğlu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)

Abstract

Telemedicine provides medical information and services using telecommunication technologies. Teledermatology, is a special part in the medical field of dermatology and one of the most common applications of telemedicine and e-health. Telecommunication technologies are used in Teledermatology to exchange medical information over a distance using audio, visual and data communication. Medical images require compression; Wavelet-based image compression provides substantial improvements in picture quality at higher compression ratios. An ideal image compression system must yield high quality compressed image with high compression ratio; this ratio can be achieved using transform-based image compression, however the contents of the image affects the choice of an optimum compression ratio and the optimum compression method. This paper presents image compression method, Haar wavelet transform, which can be applied to compress dermatology images before the transmission through a communication channel.

Keywords

Telemedicine Teledermatology Haar Wavelet Transform Medical image compression Adaptive White Gaussian Noise (AWGN) Optimum Image Compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari, N., Fong, B., Zhang, Y.T.: Wireless Technology Advances and Challenges for Telemedicine. IEEE Communications Magazine (2006)Google Scholar
  2. 2.
    Serener, A., Kavalcioglu, C.: Teledermatology based medical images with AWGN Channel in Wireless Telemedicine System. In: Proceedings of the 1st WSEAS International Conference on Manufacturing Engineering, Quality and Production Systems, pp. 145–150. Brasov, Romania (2009)Google Scholar
  3. 3.
    Pak, H.S., Edison, K.E., Whited, J.D.: Teledermatology: A User’s Guide. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, R., Woods, E.R., Eddins, L.S.: Digital Image Processing. Prentice - Hall, Upper Saddle River (2002)Google Scholar
  5. 5.
    Zukoski, M.J., Boult, T., Iyriboz, T.: A novel approach to medical image compression. Int. J. Bioinformatics Research and Appl. 2(1), 89–103 (2006)CrossRefGoogle Scholar
  6. 6.
    Porwik, P., Lisowska, A.: The Haar-Wavelet Transform in digital image processing: its status and achievements. Machine Graphics & Vision 13(1/2), 79–98 (2004)zbMATHGoogle Scholar
  7. 7.
    Khashman, A., Dimililer, K.: Image compression using Neural Networks and Haar wavelet. WSEAS Trans. On Signal Processing 4(5) (2008)Google Scholar
  8. 8.
    Ashok, V., Balakumaran, T., Gowrishankar, C., Vennila, I., Kumar, N.A.: The fast haar wavelet transform for signal & image processing. Int. Jor. Of Comp. Science and Inf. Security 7(1) (2010)Google Scholar
  9. 9.
    Bhardwaj, A., Ali, R.: Image Compression using modified fast Haar wavelet transform. World App. Sci. Jor. 7(5), 647–653 (2009)Google Scholar
  10. 10.
    Khashman, A., Dimililer, K.: Intelligent System for Medical X-Rays Compression. Trans. On Mass-Data Analysis of Images and Signals 1(1), 3–14 (2009)Google Scholar
  11. 11.
    Khashman, A., Dimililer, K.: Comparison Criteria for Optimum Image Compression. In: Proceeding of the IEEE International Conference on ’Computer as a Tool’, pp. 935–938. IEEE Press, Serbia (2005)Google Scholar
  12. 12.
    Patidar, P., Gupta, M., Sriyastava, S., Nagawat, A.K.: Image De-noising by Various Filters for Different Noise. Int. J. of Comp. App. 9(4) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kamil Dimililer
    • 1
  • Cemal Kavalcıoğlu
    • 1
  1. 1.Electrical and Electronic Engineering DepartmentNear East UniversityMersinTurkey

Personalised recommendations