Mach-Zehnder Interferometer Based All-Optical Peres Gate

  • G. K. Maity
  • J. N. Roy
  • S. P. Maity
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


Conservative and reversible logic gates are widely known to be compatible with revolutionary computing paradigms such as low-power CMOS, nanotechnology, optical and quantum computing. A conservative reversible logic gate is the Peres Gate (PG). This gate is also known as New Toffoli Gate (NTG), combining Toffloi Gate and Feynman Gate. This paper presents an optical circuit for realization of Peres Gate in all-optical domain. Semiconductor optical amplifier (SOA) based Mach-Zehnder interferometer (MZI) can play a significant role in this field of ultra fast all optical signal processing.


Reversible logic Peres gate Mach-Zehnder interferometer (MZI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Majid, H., Somayyeh, J.J., Keivan, N., Omid, H.: Design of a Novel Reversible Multiplier Circuit Using HNG Gate in Nanotechnology. World Appleid Sciences Journal 3(6), 974–978 (2008)Google Scholar
  2. 2.
    Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske M., Song, X., Massery B.: Regular realization of symmetric functions using reversible logic, pp. 245-252. IEEE, Los Alamitos (2001) 0-7695-1239-9/01Google Scholar
  3. 3.
    Saso, T., Kinoshita, K.: Conservative logic elements and their Universality. IEEE Trans. on Computers 28(9), 682–685 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shamir, J., Caulfield, H.J., Micelli, W., Seymour, R.J.: Optical Computing and Fredkin gates. Applied Optics 25(10), 1604–1607 (1986)CrossRefGoogle Scholar
  5. 5.
    Vasudavan, D.P., Lala, P.K., Parkerson, J.P.: Reversible –logic design with online testability. IEEE Trans. on Instrumentation and Measurement 55(2), 406–414 (2006)CrossRefGoogle Scholar
  6. 6.
    Agrwal, G.P.: Applications of nonlinear fibre optics. Academic press, India (2001) (an imprint of Elsevier, San Diego, USA)Google Scholar
  7. 7.
    Chattopadhyay, T., Roy, J.N.: Design of SOA-MZI based all-optical programmable logic device (PLD). Optics Communication 283(12), 2506–2517 (2010)CrossRefGoogle Scholar
  8. 8.
    Schreieck, R., Kwakernaak, M., Jackel, H., Melchior, H.: Ultafast switching dynamics of Mach-Zehnder Interferometer switches. IEEE Photonics Technology Letters 13(6), 603–605 (2001)CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Zhao, Y., Wang, L.: Design and analysis of all-optical XOR gate using SOA-based Mach-Zehnder Interferometer. Optics Communications 223, 301–308 (2003)CrossRefGoogle Scholar
  10. 10.
    Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics 25(11), 2297–2306 (1989)CrossRefGoogle Scholar
  11. 11.
    Eiselt, M., Pieper, W., Weber, H.G.: SLALOM: Semiconductor Laser Amplifier in a Loop mirror. Journal of Lightwave Technology 13(10), 2099–2112 (1995)CrossRefGoogle Scholar
  12. 12.
    Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Mach-Zehnder Interferometer based all-optical Reversible Logic Gate. Optics and Laser Technology 42(2), 249–259 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • G. K. Maity
    • 1
  • J. N. Roy
    • 2
  • S. P. Maity
    • 3
  1. 1.Calcutta Institute of TechnologyHowrahIndia
  2. 2.Department of PhysicsNational Institute of TechnologyAgartalaIndia
  3. 3.Department of Information TechnologyBengal Engineering and Science UniversityHowrahIndia

Personalised recommendations