Advertisement

A Histogram Adaptation for Contrast Enhancement

  • Lisha Thomas
  • K. Santhi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)

Abstract

Histogram equalization is the common methods used for improving contrast in image processing application. But this technique is not well suited for implementation in consumer electronics such as television as it introduces unnecessary visual deterioration such as the saturation effect. It causes changes in the brightness of the input image. Thus, for the implementation of contrast enhancement it should be able to maintain the original input brightness in the output image. By adapting the input histogram, input brightness can be preserved. The adapted histogram can then be accumulated to map input pixels to output pixels. By introducing designed penalty terms, the level of contrast enhancement can be adjusted. Thus it is possible to generate a modified histogram which is closer to uniform histogram. Experimental results show a comparison of various quantitative measurements.

Keywords

Contrast enhancement histogram equalization histogram modification image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, Y.T.: Enhancement using brightness preserving bi-histogram equalization. IEEE Transaction on Consumer Electronics 43(1), 1–8 (1997)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub image histogram equalization method. IEEE Trans. Consumer Electronics 45(1), 68–75 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, S.-D., Ramli, A.R.: Minimum mean brightness error bihistogram equalization in contrast enhancement. IEEE Trans. Consumer Electronics 49(4), 1310–1319 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, S.-D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consumer Electronics 49(4), 1310–1319 (2003)CrossRefGoogle Scholar
  5. 5.
    Wongsritong, K., Kittayaruasiriwat, K., Cheevasuvit, F., Dejhan, K., Somboonkaew, A.: Contrast enhancement using multipeak histogram equalization with brightness preserving. In: 1998 IEEE Asia-Pacific Conference on Circuit and System, pp. 455–458 (1998)Google Scholar
  6. 6.
    Ibrahim, H., Kong, N.S.P.: Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement. IEEE Transactions on Consumer Electronics 53(4), 1752–1757 (2007)CrossRefGoogle Scholar
  7. 7.
    Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, Z.Y., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-level grouping (GLG): An automatic method for optimized image contrast enhancement—Part I: The basic method. IEEE Transaction on Image Processing 15(8), 2290–2302 (2006)CrossRefGoogle Scholar
  9. 9.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn., pp. 443–445, 598 – 605. University of Tennessee (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lisha Thomas
    • 1
  • K. Santhi
    • 1
  1. 1.Department of Electronics and communicationK.S.R College of TechnologyTiruchengodeIndia

Personalised recommendations