Noise Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise

  • Madhu S. Nair
  • P. M. Ameera Mol
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


This paper proposes a new efficient noise adaptive weighted switching median filter for the restoration of images that are corrupted by high density of impulse noise. The proposed method consists of two phases- noise detection and filtering. In our proposed method, the filtering window size is chosen adaptively depending on the percentage of noise that corrupts the image. Noise detection is done by using Boundary Discriminative Noise Detection method proposed by P.-E Ng and then filtering is applied to only the corrupted pixels in the noisy image. Each detected noisy pixel is replaced by a weighted median value of uncorrupted pixels in the filtering window. Weight value assigned to each uncorrupted pixel depends on its closeness to the central pixel.


Image denoising Impulse noise Noise adaptive weighted switching median filter Salt and pepper noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou, Y.-T., Chellappa, R., Vaid, A., Jenkins, B.K.: Image Restoration Using a Neural Network. IEEE Transactions on Acoustics, Speech and Signal Processing 36(7), 1141–1151 (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Civicioglu, P.: Using Uncorrupted Neighborhoods of the Pixels for Impulsive Noise Suppression With ANFIS. IEEE Transactions on Image Processing 16(3) (March 2007)Google Scholar
  3. 3.
    Luo, W.: Eficient removal of impulse noise from digital images. IEEE Transaction on Consumer Electronics 52(2), 523–527 (2006)CrossRefGoogle Scholar
  4. 4.
    Schulte, S., Nachtegael, M., Witte, V.D., Weken, D.V., Kerre, E.E.: A Fuzzy Impulse Noise Detection and Reduction Method. IEEE Transactions on Image Processing 15(5), 1153–1162 (2006)CrossRefGoogle Scholar
  5. 5.
    Schulte, S., Witte, V.D., Nachtegael, M., Weken, D.V., Kerre, E.E.: Fuzzy Two-Step Filter for Impulse Noise Reduction From Color Images. IEEE Transactions on Image Processing 15(11), 3567–3578 (2006)CrossRefGoogle Scholar
  6. 6.
    Nair, M.S., Raju, G.: A new fuzzy-based decision algorithm for high-density impulse noise removal. Signal Image and Video Processing, doi:10.1007/s11760-010-0186-4Google Scholar
  7. 7.
    Ng, P.-E., Ma, K.-K.: A Switching Median Filter With Boundary Discriminative Noise Detection for Extremely Corrupted Images. IEEE Transactions on Image Processing 15(6), 1506–1516 (2006)CrossRefGoogle Scholar
  8. 8.
    Eng, H.-L., Ma, K.-K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242–251 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Duan, F., Zhang, Y.-J.: A Highly Effective Impulse Noise Detection Algorithm for Switching Median Filters. IEEE Signal Processing Letters 17(7) (July 2010)Google Scholar
  10. 10.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  11. 11.
    Nair, M.S., Revathy, K., Tatavarti, R.: An Improved Decision-Based Algorithm for Impulse Noise Removal. In: International Congress on Image and Signal Processing - CISP 2008, vol. 1, pp. 426–431. IEEE Computer Society Press, Los Alamitos (2008), doi:10.1109/CISP.2008.21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Madhu S. Nair
    • 1
  • P. M. Ameera Mol
    • 1
  1. 1.Department of Computer ScienceUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations