Advertisement

Stratified SIFT Matching for Human Iris Recognition

  • Sambit Bakshi
  • Hunny Mehrotra
  • Banshidhar Majhi
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)

Abstract

This paper proposes an efficient three fold stratified SIFT matching for iris recognition. The objective is to filter wrongly paired conventional SIFT matches. In Strata I, the keypoints from gallery and probe iris images are paired using traditional SIFT approach. Due to high image similarity at different regions of iris there may be some impairments. These are detected and filtered by finding gradient of paired keypoints in Strata II. Further, the scaling factor of paired keypoints is used to remove impairments in Strata III. The pairs retained after Strata III are likely to be potential matches for iris recognition. The proposed system performs with an accuracy of 96.08% and 97.15% on publicly available CASIAV3 and BATH databases respectively. This marks significant improvement of accuracy and FAR over the existing SIFT matching for iris.

Keywords

Iris Recognition Stratified SIFT Keypoint Matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daugman, J.: The importance of being random: Statistical principles of iris recognition. Pattern Recognition 36(2), 279–291 (2003)CrossRefGoogle Scholar
  2. 2.
    Kim, J., Cho, S., Choi, J., Marks, R.J.: Iris Recognition Using Wavelet Features. The Journal of VLSI Signal Processing (38), 147–156 (2004)CrossRefGoogle Scholar
  3. 3.
    Monro, D.M., Rakshit, S., Zhang, D.: Dct-based iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 586–595 (2007)CrossRefGoogle Scholar
  4. 4.
    Tisse, C., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. In: Proc. of Vision Interface, pp. 294–299 (2002)Google Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 6(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Belcher, C., Du, Y.: Region-based sift approach to iris recognition. Optics and Lasers in Engineering 47(1), 139–147 (2009)CrossRefGoogle Scholar
  7. 7.
    Jain, A., Flynn, P., Ross, A.: Handbook of Biometrics. Springer-Verlag New York, Inc., Secaucus (2007)Google Scholar
  8. 8.
  9. 9.
    Chinese Academy of Sciences’ Institute of Automation (CASIA) Iris Image Database V3.0, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sambit Bakshi
    • 1
  • Hunny Mehrotra
    • 1
  • Banshidhar Majhi
    • 1
  1. 1.Department of Computer Science and EngineeringNational Institute of Technology RourkelaIndia

Personalised recommendations