Palmprint Authentication by Phase Congruency Features

  • Jyoti Malik
  • G. Sainarayanan
  • Ratna Dahiya
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


The abstract should summarize the contents of the paper and should Palmprint recognition is an effective biometric authentication method to automatically identify a person’s identity. In this paper, phase congruency method is proposed to extract features from a palm-print image for authentication. The phase congruency is one of the promising methods to analyze the image as it is invariant to image contrast and therefore can extract reliable features under varying illumination conditions. The hand image is pre-processed to get the desired Region of Interest (ROI) / palmprint. The palmprint features are extracted by phase congruency method and are stored in feature vector. Euclidean Distance similarity measurement method is used to compare the similarity/dissimilarity between two feature vectors. Experiments were developed on a database of 600 images from 100 individuals, with five image samples per individual for training and one image sample per individual for testing.


Palmprint Palmprint Authentication Phase Congruency Euclidean distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    PavesÎć, N., Ribarić, S., Ribarić, D.: Personal authentication using hand-geometry and palmprint features – the state of the art. In: Proc. Workshop: Biometrics – Challenges Arising from Theory to Practice, Cambridge, pp. 17–26 (2004)Google Scholar
  3. 3.
    Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal authentication using hand images. Pattern Recognit. Lett. 27(13), 1478–1486 (2006)CrossRefGoogle Scholar
  4. 4.
    Kumar, Zhang, D.: Combining fingerprint, palmprint and handshape for user authentication. In: Proceedings of ICPR, vol. 4, pp. 549–552Google Scholar
  5. 5.
    Kumar, A., Zhang, D.: Personal authentication using multiple palmprint representation. Pattern Recognit. 38(10), 1695–1704 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Kong, W.K., You, J., Wong, M.: Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1041–1050 (2003)CrossRefGoogle Scholar
  7. 7.
    Wu, X.Q., Wang, K.Q., Zhang, D.: Wavelet based palmprint recognition. In: Proc. Int. Conf. Machine Learning and Cybernetics, Beijing, pp. 1253–1257 (2002)Google Scholar
  8. 8.
    Wu, X.Q., Wang, K.Q., Zhang, D.: Palm line extraction and matching for personal authentication. IEEE Transactions on Systems, Man and Cybernatics 36(5), 978–986 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wu, X.Q., Wang, K.Q., Zhang, D.: Palmprint Recognition using Directional Line Energy feature. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004 (2004)Google Scholar
  10. 10.
    Wu, X., Wang, K., Zhang, D.: Palmprint authentication based on orientation code matching. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 555–562. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Huang, D.S., Jia, W., Zhang, D.: Palmprint verification based on principal lines. Pattern Recognit. 41(4), 1316–1328 (2008)CrossRefGoogle Scholar
  12. 12.
    Lu, G., Zhang, D., Wang, K.: Palmprint recognition using eigenpalm features. Pattern Recognit. Lett. 24(9-10), 1463–1467 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Shang, L., Hunag, D.S., Du, J.X., Zheng, C.H.: Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13-15), 1782–1786 (2006)CrossRefGoogle Scholar
  14. 14.
    Hud, Fengg, Zhouz: Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognit. 40(1), 339–342 (2007)CrossRefGoogle Scholar
  15. 15.
    Savič, T., Paveš Ić, N.: Personal recognition based on an image of the palmar surface of the hand. Pattern Recognit. 40(11), 3152–3163 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Han, C.C., Cheng, H.L., Lin, C.L., Fan, K.C.: Personal authentication using palm-print features. Pattern Recognit. 36(2), 371–381 (2003)CrossRefGoogle Scholar
  17. 17.
    Marr, D., Hildreth, E.C.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)Google Scholar
  18. 18.
    Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 112–131 (1986)Google Scholar
  19. 19.
    Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)Google Scholar
  20. 20.
    Punsawad, Y., Wongsawat, Y.: Palmprint Image Enhancement Using Phase Congruency. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biometrics, Bangkok, Thailand, February 21-26 (2009)Google Scholar
  21. 21.
    Struc, V., Pavesic, N.: Phase congruency features for palmprint verification. IET Signal Processing 3(4), 258–268 (2008)CrossRefGoogle Scholar
  22. 22.
    The PolyU Palmprint Database,
  23. 23.
    Wong, K.Y.E., Sainarayanan, G., Chekima, A.: Palmprint Identification Using SobelCode. In: Malaysia-Japan International Symposium on Advanced Technology 2007, Kuala Lumpur, Malaysia (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jyoti Malik
    • 1
  • G. Sainarayanan
    • 2
  • Ratna Dahiya
    • 1
  1. 1.Electrical engineering DepartmentNational Institute of TechnologyKurukshetraIndia
  2. 2.New Horizon College of EngineeringBangaloreIndia

Personalised recommendations