Grey System Theory-Based Energy Map Construction for Wireless Sensor Networks

  • Vivek Katiyar
  • Narottam Chand
  • Surender Soni
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


Energy is one of the most important resources in wireless sensor networks (WSN). Due to unattended nature of WSNs, it should be used smartly and efficiently to maximize lifetime. A map representing the residual energy of sensor nodes in the sensor field can be constructed, which is called as energy map. Depletion of energy in sensor nodes can be modeled as time-series. The grey models are considered to be the best tool for time–series prediction. In this paper, we propose a grey system theory-based prediction approach to construct the energy map for WSN. Simulation results show that our proposed approach outperforms various prediction based approaches for energy map construction.


energy map grey system theory prediction sensor nodes statistical approach WSN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kay, R., Mattern, F.: The Design Space of Wireless Sensor Networks. IEEE Wireless Communications 11(6), 54–61 (2004)CrossRefGoogle Scholar
  2. 2.
    Haenselmann, T.: Sensornetworks. GFDL Wireless Sensor Network textbook, (retrieved August 29, 2006)
  3. 3.
    Tiwari, A., Ballal, P., Lewis, F.L.: Energy-efficient wireless sensor network design and implementation for condition-based maintenance. ACM Transactions on Sensor Networks (TOSN) 3(1) (2007)Google Scholar
  4. 4.
    Hadim, S., Mohamed, N.: Middleware: middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online 7(3), 1 (2006)CrossRefGoogle Scholar
  5. 5.
    Katiyar, V., Chand, N., Chauhan, N.: Recent Advances and future trends in Wireless Sensor Networks. International Journal of Applied Engineering Research 2(1), 43–55 (2010)Google Scholar
  6. 6.
    Zhao, Y.J., Govindan, R., Estrin, D.: Residual Energy Scans for Monitoring Wireless Sensor Networks. In: IEEE Wireless Communications and Networking Conference, pp. 356–362 (2002)Google Scholar
  7. 7.
    Mini, A.F., Antonio, L.A.F., Nath, B.: The distinctive design characteristic of a wireless sensor network: the energy map. Computer Communications 27, 935–945 (2004)CrossRefGoogle Scholar
  8. 8.
    Mini, R.A.F., Machado, M.V., Loureiro, A.A.F., Nath, B.: Prediction-based Energy map for Wireless Sensor Networks. Ad Hoc Net. J. 3, 235–253 (2005)CrossRefGoogle Scholar
  9. 9.
    Song, C., Guizani, M.: Energy map: Mining Wireless Sensor Network Data. In: International Conference on Communications, 2006, ICC 2006, vol. 8, pp. 3525–3529. IEEE, Los Alamitos (2006)Google Scholar
  10. 10.
    Song, C., Guizani, M., Sharif, H.: Adaptive clustering in wireless sensor networks by mining sensor energy data. Computer Communications 30, 2968–2975 (2007)CrossRefGoogle Scholar
  11. 11.
    Al-Karaki, J.N., Ghada, Al-Mashaqbeh, A.: Energy-centric routing in wireless sensor networks. Microprocessors and Microsystems 31, 252–262 (2007)CrossRefGoogle Scholar
  12. 12.
    Niculescu, D., Nath, B.: Trajectory-based forwarding and its applications. In: Rutgers University Technical Report DCS-TR-488, pp. 1–18 (2002)Google Scholar
  13. 13.
    Goussevskaia, O., Machado, M.V., Mini, R.A.F., Loureiro, A.A.F., Mateus, G.R., Nogueira, J.M.: Data Dissemination Based on the Energy map. Topics in Ad-hoc Networking, IEEE Communications Magazine, 134–143 (2005)Google Scholar
  14. 14.
    Rhazi, A.E.L., Pierre, S.: A Data Collection Algorithm Using Energy maps in Sensor Networks. In: Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2007 (2007)Google Scholar
  15. 15.
    Kayacan, E., Ulutas, B., Kaynak, O.: Grey system theory-based models in time series prediction. Expert Systems with Applications 37, 1784–1789 (2010)CrossRefGoogle Scholar
  16. 16.
    Deng, J.L.: Introduction to grey system theory. The Journal of Grey System 1(1), 1–24 (1989)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Han, S., Chan, E.: Continuous Residual Energy Monitoring in Wireless Sensor Networks. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 169–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Li, M., Liu, Y.: Iso-Map: Energy-Efficient Contour Mapping in Wireless Sensor Networks. IEEE Transactions on Knowledge and Data Engineering 22(5), 699–710 (2010)CrossRefGoogle Scholar
  19. 19.
    Reddy, A., Estrin, D., Govindan, R.: Large Scale Fault Isolation. IEEE Journal of Selected Areas in Communication, Special Issue on Network Management, 733–743 (2000)Google Scholar
  20. 20.
    Zhao, J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless sensor networks. Technical Report 02-773, USC (September 2003)Google Scholar
  21. 21.
    Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)Google Scholar
  23. 23.
    Mini, R.A.F., Loureiro, A.A.F., Nath, B.: Energy map Construction for Wireless Sensor Network under a Finite Energy Budget. In: MSWiM 2004, pp. 165–169 (2004)Google Scholar
  24. 24.
    Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  25. 25.
    Wei, G., Linga, Y., Guoa, B., Xiaob, B., Vasilakos, A.V.: Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communication 34(6), 793–802 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vivek Katiyar
    • 1
  • Narottam Chand
    • 1
  • Surender Soni
    • 1
  1. 1.Department of Computer Science and EngineeringNational Institute of Technology HamirpurHamirpurIndia

Personalised recommendations