Skip to main content

Bending Experiments on Thin Cylindrical Shells

  • Chapter
  • First Online:
Materials with Complex Behaviour II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 16))

Abstract

Cylindrical shell structures are highly susceptible to buckling phenomena when they experience compressive stress. In fact, there are few experimental researches that give the real behavior of a cylindrical shell submitted to pure bending, especially thin shells. This is due to the difficulty of pure bending applying to such thin shells and that such structures behavior under bending is frequently considered rather similar to pure compression. This chapter describes an experimental investigation of a procedure including a system for applying pure bending to cylindrical shells with radius to thickness ratio equals 155. The instrumentation consists of a new loading system in which the pure bending is applied using concentrated loads at the ends of the test model. Ultimately, the critical values for moments as well as buckling modes were compared with finite element (FE) results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flügge, W.: Die Stabilität der Kreiszylinderschale. Ing. Arch. 3, 463–506 (1932)

    Article  MATH  Google Scholar 

  2. Timoshenko, S.: Einige Stabilitatsprobleme der Elastizitatstheorie. Zeitshcrift für Math. Phys. 58, 337–385 (1910)

    Google Scholar 

  3. Lorenz, R.: Achsensymmetrische Verzerrungen in dünnwandigen Hohlzylinder. Z. Vereines Deutscher Ing. 52, 1706–1713 (1908)

    Google Scholar 

  4. Southwell, R.W.: On the general theory of elastic stability. Philos. Trans. R. Soc. Lond. Ser. A 213, 187–244 (1914)

    Article  Google Scholar 

  5. Lundquist, E.E.: Strength tests of thin-walled duralumin cylinders in pure bending. NACA Report 479 (1933)

    Google Scholar 

  6. Donnell, L.H.: A new theory for the buckling of thin cylinders under axial compression and bending. Trans. ASME 56, 795–806 (1934)

    Google Scholar 

  7. Brazier, L.G.: On the flexure of thin cylindrical shells and other “thin” sections. Proc. R. Soc. Ser. A 116, 104–114 (1927)

    Article  MATH  Google Scholar 

  8. Chwalla, E.: Reine Biegung schlanker, dünnwandiger Rohre mit gerader Achse. Zeitschrift für angewandete Mathematik und Mechanik 13(1), 48–53 (1933)

    Article  MATH  Google Scholar 

  9. Singer, J.: Buckling experiments: experimental methode in buckling of thin-walled structures, vol. 2. Wiley, New York (2002)

    Google Scholar 

  10. Imperial, F.F.: The criterion of elastic instability of thin duralumin tubes subjected to bending. MS Thesis, Department of Mechanical Engineering, University of California (1932)

    Google Scholar 

  11. Seide, P., Weingarten VI.: On the buckling of circular cylindrical shells under pure bending. J. Appl. Mech. ASME 28, 112–116 (1961)

    Article  MathSciNet  Google Scholar 

  12. Reddy, B.D.: An experimental study of the plastic buckling of circular cylinders in pure bending. Int. J. Solids Struct. 15, 669–683 (1979)

    Article  Google Scholar 

  13. Kyriakides, S., Ju, G.T.: Bifurcation and localization instabilities in cylindrical shells under bending. I. Experiments. Int. J. Solids Struct. 29, 1117–1142 (1992)

    Article  Google Scholar 

  14. Ju, G.T., Kyriakides, S.: Bifurcation and localization instabilities in cylindrical shells under bending. II. Predictions. Int. J. Solids Struct. 29, 1143–1171 (1992)

    Article  Google Scholar 

  15. Libai, A., Bert, C.W.: A mixed variational principle and its application to the nonlinear bending problem of orthotropic tubes—II: application to nonlinear bending of circular cylindrical tubes. Int. J. Solids Struct. 31(7), 1019–1033 (1994)

    Article  Google Scholar 

  16. Tatting, B.F., Gürdal, Z., Vasiliev, V.V.: The Brazier effect for finite length composite cylinders under bending. Int. J. Solids Struct. 34, 1419–1440 (1997)

    Article  MATH  Google Scholar 

  17. Stephens, W.B., Starnes Jr, J.H.: Collapse of long cylindrical shells under combined bending and pressure loads. AIAA J. 13(1), 20–25 (1975)

    Article  MATH  Google Scholar 

  18. Fabian, O.: Collapse of cylindrical, elastic tubes under combined bending, pressure and axial loads. Int. J. Solids Struct. 13, 1257–1270 (1977)

    Article  MATH  Google Scholar 

  19. Babcock, C.D.: Experiments in shell buckling. In: Fung, Y.C., Sechler, E.E. (eds.) Thin-Shell Structures, Theory; Experiments and Design, pp. 345–369. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  20. Singer, J.: Buckling experiments on shells-a review of recent developments. Solid Mech. Arch. 7, 213–313 (1982)

    MATH  Google Scholar 

  21. Thompson, J.M.T.: Making of thin metal shells for model stress analysis. J. Mech. Eng. Sci. 2(2), 105–108 (1960)

    Article  Google Scholar 

  22. Golzan, B.S., Showkati, H.: Buckling of thin-walled conical shells under uniform external pressure. Thin-Walled Struct. 46, 516–529 (2008)

    Article  Google Scholar 

  23. Singer, J., Abramovich, H.: The development of shell imperfection measurement techniques. Thin-Walled Struct. 23, 379–398 (1995)

    Article  Google Scholar 

  24. Showkati, H., Shahandeh, R.: Experiments on the buckling behavior of ring-stiffened pipelines under hydrostatic pressure, ASCE. J. Eng. Mech. 136, 464–471 (2010)

    Google Scholar 

  25. ABAQUS, Documentation and help, Version 6.6

    Google Scholar 

  26. Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15, 529–551 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bai, Y.: Pipelines and risers, vol. 3. Elsevier Ocean Engineering Book Series, London (2001)

    Google Scholar 

  28. Venstel, E., Krauthammer, T.: Thin plates and shells, theory, analysis and application. p. 3. Marcel Dekker, New York (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to put across gratitude to the Structures Laboratory of Urmia University specially the technician Mr. Azimzadeh. The authors also want to thank Prof. A. Behravesh for encouraging this work. Lastly but not least the authors would like to thank Dr. Hodjat Shiri from the University of Western Australia to his valuable remarks and many discussions regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohid Ghanbari Ghazijahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghanbari Ghazijahani, T., Showkati, H. (2012). Bending Experiments on Thin Cylindrical Shells. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_7

Download citation

Publish with us

Policies and ethics