Skip to main content

Dynamic Modeling and Control Study of the NAO Biped Robot with Improved Trajectory Planning

  • Chapter
  • First Online:
Materials with Complex Behaviour II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 16))

Abstract

Motion study of bipedal robots necessitates correct solutions of the forward and inverse kinematics with optimized and fast closed form computations which justifies an accurate kinematic model. On the other hand, dynamic modeling and stability analysis are essential for control study of humanoid robots to reach robust walk. This chapter is focused on dynamic modeling of the Nao humanoid robot, made by Aldebaran Co., in the RoboCup standard platform league. Moreover, trajectory approximation with a cubic Spline and kinematic analysis are described in brief here in this chapter. Main constraints such as inertial forces and joint angles for the given position and nominal conditions are simulated, mathematically described, and verified through experimental results from the real robot sensory data. The above mentioned modifications on the solution together with the dedication of other physical properties in dynamic modeling results in more precise acceleration and torque values as it is concluded in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goswami, A. Kinematic and dynamic analogies between planar biped robots and the reaction mass pendulum (RMP) model. In: Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots, pp. 182–188 (2008)

    Google Scholar 

  2. Kagami, S., Mochimaru, M., Ehara, Y., Miyata, N., Nishiwaki, K., Kanade, T., Inoue, H.: Measurement and comparison of humanoid H7 walking with human being. J. Robot. Auton. Syst. 48, 177–187 (2003)

    Article  Google Scholar 

  3. Wollherr, D., Buss, M., Hardt, M., Stryk, O.V.: Research and development towards an autonomous biped walking robot. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (2003)

    Google Scholar 

  4. Fujimoto, Y.:Trajectory generation of biped running robot with minimum energy consumption. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 3803–3808 (2004)

    Google Scholar 

  5. Huang, O., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17, 280–289 (2001)

    Article  Google Scholar 

  6. Sugihara, T., Nakamura, Y., Inoue, H.: Real time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: The Proceedings of the IEEE International Conference on Robotics & Automation, pp. 1404–1409 (2002)

    Google Scholar 

  7. McGee, T.G., Spong, M.W.: Trajectory planning and control of a novel walking biped. IEEE Conf. Control Appl, 1099–1104 (2001)

    Google Scholar 

  8. Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro, F., Fujiwara, K., Hirukawa, H.:Biped walking pattern generator allowing auxiliary ZMP control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993–2999 (2006)

    Google Scholar 

  9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.:Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  10. Hurmuzlua, Y., Genot, F., Brogliatoc, B.: Modeling, stability and control of biped robots-a general framework. Automatica 40, 1647–1664 (2004)

    Article  Google Scholar 

  11. Colbaugh, R., Glass, K., Seraji, H.: An adaptive inverse kinematics algorithm for robot manipulators. Int. J. Model. Simul 11(2), 33–38 (1991)

    Google Scholar 

  12. Azevedo, C., Andreff, N., Arias, S.: Bipedal walking: from gait design to experimental analysis. Mechatron Elsevier 14(6), 639–665 (2004)

    Article  Google Scholar 

  13. Wieber, P. B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: Proceedings of the IEEE International Conference on Humanoids, pp. 137–142 (2006)

    Google Scholar 

  14. Vukobratović, M., Borovac, B., otkonjak, V. :Contribution to the synthesis of biped gait. In: Proceedings of the IFAC Symposium on Technical and Biological Problem and Control (1969)

    Google Scholar 

  15. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans Robot Autom 17(3), 874–879 (2001). June

    Google Scholar 

  16. Choi, Y., You, B. J., Oh, S. R.: On the stability of indirect ZMP controller for biped robot systems. In: Proceedings of International Conference on Intelligent Robots and Systems, 1966–1971 (2004)

    Google Scholar 

  17. Huang, Q., Kaneko, K., Yokoi, K., Kajita, S., Kotoku, T., Koyachi, N., Arai, H., Imamura, N., Komoriya, K., Tanie, K.: Balance control of a biped robot combining off-line pattern with real-time modification. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation San Francisco, pp. 3346–3352, April 2000

    Google Scholar 

  18. Huang, O., Kajita, S., Koyachi, N., Kaneko, K., Yokoi, K., Arai, H., Komoriya, K., ane, K.: A high stability, smooth walking pattern for a biped robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 65–71 (1999)

    Google Scholar 

  19. Jensen, B.T., Niss M.O.K.: Modeling, simulation, and control of biped robot AAU-BOT1. Master’s thesis, Aalborg University (2009)

    Google Scholar 

  20. Jadidi, M.G, Hashemi, E., Harandi, M.A.Z., Sadjadian, H.: Kinematic Modeling Improvement and Trajectory Planning of the Nao Biped Robot. In proceedings of the Joint International Conference on Multibody System Dynamics, Finland, May 2010

    Google Scholar 

  21. Zannatha, J.I., Limon, R.C.: Forward and inverse kinematics for a small-sized humanoid robot. In: Proceedings of the 19th IEEE International Conference on Electrical. Communications and Computers, pp. 111–118 (2009)

    Google Scholar 

  22. Christensen, J., Nielsen, J.L., Svendsen, M.S., Ørts, P.F.: Development, modeling and control of a humanoid robot, Master’s thesis, Aalborg University (2007)

    Google Scholar 

  23. John, J.: Craig, Introduction to Robotics: Mechanics and Control, Pearson Prentice Hall, 3rd edn (2005). ISBN: 0-13-123629-6

    Google Scholar 

  24. Mu, X., Wu, Q.: A complete dynamic model of five-link bipedal walking. Proc. Am. Control Conf. 6, 4926–4931 (2003)

    Google Scholar 

  25. Goldenberg, A.A., Benhabib, B., Fenton, R.G.: A complete generalized solution to the inverse kinematics of robots. IEEE J. Robot. Autom. (RA) 1(1), 14–20 (1985)

    Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Qazvin Islamic Azad University, Young Researchers Club (YRC), and technical support of Mechatronics Research Lab. Nao team members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hashemi .

Editor information

Editors and Affiliations

Appendix

Appendix

Position constraints of foot and torso in sagittal plane are defined as:

$$ x_{f} \left( t \right) = \left\{ \begin{gathered} \left( {k - 1} \right)L_{step} \hfill \\ \left( {k - 1} \right)L_{step} \hfill \\ \left( {k - 1} \right)L_{step} + L_{\max } \hfill \\ (k + 1)L_{step} \hfill \\ \end{gathered} \right.\begin{array}{*{20}c} {,t = t_{1} } \\ {,t = t_{2} } \\ {,t = t_{3} } \\ {,t = t_{4} } \\ \end{array} \quad z_{f} \left( t \right) = \left\{ {\begin{array}{*{20}c} {FootHeight} & {t = t_{1} } \\ {FootHeight} & {t = t_{2} } \\ {h_{f\max } } & {t = t_{3} } \\ {FootHeight} & {t = t_{4} } \\ \end{array} } \right. $$
(A.1)

In which \( L_{step} \) is the step length, \( L_{\max } \) is the maximum horizontal distance of the ankle from the start point in \( T_{\max } ,\,h_{f\max } \) is the maximum ankle height during \( T_{step} . \) Constraints in torso position for specified times are as below:

$$ x_{t} \left( t \right) = \left\{ \begin{gathered} kL_{step} - 1.3x_{ts} \hfill \\ kL_{step} - x_{ts} \hfill \\ kL_{step} + x_{te} \hfill \\ \end{gathered} \right.\begin{array}{*{20}c} {,t = t_{1} } \\ {,t = t_{2} } \\ {,t = t_{4} } \\ \end{array} ,\,y_{t} = \left\{ {\begin{array}{*{20}c} {y_{tmid} } & {,t = t_{1} } \\ {y_{t\min } } & {,t = t_{3} } \\ \end{array} } \right.,\,z_{t} \left( t \right) = \left\{ {\begin{array}{*{20}c} {h_{t\min } } & {,t = t_{1} } \\ {h_{t\max } } & {,t = t_{3} } \\ {h_{t\min } } & {,t = t_{4} } \\ \end{array} } \right. $$
(A.2)

\( y_{tmid} \) stands for the distance between the feet and \( y_{t\min } \) is the minimum distance from the ankle of the supporting foot to the spinal column. Experimental results substantiate the margin of \( y_{t\min } \) between \( - 0.2\,y_{tmid} \) and \( 0.4\,y_{tmid} . \) Furthermore, \( h_{t\max } \) and \( h_{t\min } \) symbolizes maximum and minimum torso height (Tables 3, 4.

Table 3 Link vectors and CoM vectors extracted from the Nao physical specifications provided by Aldebaran Co. and geometrical modeling by MRL-Nao team
Table 4 The mass and diagonal elements of the inertia tensors of each Nao’s link

Approximation functions of Eq. 9 in text are described as:

$$ f_{1} (\theta_{3} ) = a_{3} (c\theta_{3} ) + d_{4} s\alpha_{3} (s\theta_{3} ) + a_{2} $$
(A.3)
$$ f_{2} (\theta_{3} ) = a_{3} c\alpha_{2} (s\theta_{3} ) - d_{4} s\alpha_{3} c\alpha_{2} (c\theta_{3} ) - d_{4} s\alpha_{2} c\alpha_{3} - d_{3} s\alpha_{2} $$
(A.4)
$$ f_{3} (\theta_{3} ) = a_{3} s\alpha_{2} (s\theta_{3} ) - d_{4} s\alpha_{3} s\alpha_{2} (c\theta_{3} ) + d_{4} c\alpha_{2} c\alpha_{3} + d_{3} c\alpha_{2} $$
(A.5)
$$ g_{1} (\theta_{2} ,\theta_{3} ) = \left[ {c\theta_{2} f_{1} (\theta_{3} )} \right] - \left[ {s\theta_{2} f_{2} (\theta_{3} )} \right] + a_{1} $$
(A.6)
$$ g_{2} (\theta_{2} ,\theta_{3} ) = c\alpha_{1} \left[ {s\theta_{2} f_{1} (\theta_{3} )} \right] + c\alpha_{1} \left[ {c\theta_{2} f_{2} (\theta_{3} )} \right] - s\alpha_{1} \left[ {f_{3} (\theta_{3} )} \right] - d_{2} s\alpha_{1} $$
(A.7)
$$ g_{3} (\theta_{2} ,\theta_{3} ) = s\alpha_{1} \left[ {s\theta_{2} f_{1} (\theta_{3} )} \right] + s\alpha_{1} \left[ {c\theta_{2} f_{2} (\theta_{3} )} \right] + c\alpha_{1} \left[ {f_{3} (\theta_{3} )} \right] + d_{2} c\alpha_{1} $$
(A.8)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashemi, E., Ghaffari Jadidi, M. (2012). Dynamic Modeling and Control Study of the NAO Biped Robot with Improved Trajectory Planning. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_42

Download citation

Publish with us

Policies and ethics