Skip to main content

Heavy Oils Transportation in Catenary Pipeline Riser: Modeling and Simulation

  • Chapter
  • First Online:
Materials with Complex Behaviour II

Abstract

This chapter presents information about multiphase flows such as definition, flow pattern and modeling. Application to petroleum industry has been given to water-heavy oil flow in catenary riser. In offshore platforms a catenary riser is often used to carry heavy ultraviscous oils. However, the high viscosity of these oils provides an elevated pressure drop in the flow. Several studies report the use of the core-flow technique in vertical and horizontal pipes to reduce the pressure drop in the transport of heavy oils. Nevertheless, so far no record of studies using catenary riser was found. Results of velocity, pressure, temperature and volumetric fraction distribution were presented and analyzed. The pressure drop in the catenary riser decreased 3.28 times compared with the single-phase oil flow. This low value compared with the available literature was attributed to the presence of regions of adhesion along the surface of the overhead line and the high viscosity of the produced water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A αβ :

Interfacial area density (1/m)

C D :

Drag coefficient (-)

D αβ :

Drag force (N)

d αβ :

Mixture length scale (m)

d β :

Mean diameter (m)

Eo :

Eötvös number (-)

f α :

Volume fraction (-)

g :

Gravitational acceleration (m/s2)

h α :

Specific enthalphy (J/kg)

h αβ :

Heat transfer coefficient W/m2 K

k :

Turbulent kinetic energy (m2/s2)

LB αβ :

Lubrication force (N)

L αβ :

Lift force (N)

M α :

Total force on phase α (N)

M αβ :

Interphase momentum transfer (N)

Nu:

Nusselt number (-)

Pr:

Prandtl number (-)

Q m :

Heavy oil and water volumetric flow (m3/s)

Q α :

Interphase heat transfer (W/m2)

Re:

Reynolds number (-)

S :

Mass source (kg/m3s)

S :

External heat source (kg/m s3)

S α :

Momentum sources (kg//m2 s2)

t:

Time (s)

TD αβ :

Turbulent dispersion force (N)

U α :

Velocity vector (m/s)

VM αβ :

Virtual mass force (N)

Γ αβ :

Mass flow rate per unit volume (kg/m3 s)

ε :

Turbulence dissipation rate (m2/s3)

λ α :

Thermal conductivity (W/m K)

λ αβ :

Misture conductivity scale (m)

μ t :

Turbulent viscosity (kg/m s)

μ α :

Dynamic viscosity (kg/m s)

ρ α :

Density (kg/m3)

ρ αβ :

Mixture density (kg/m3)

σ :

Surface tension coefficien t (N/m2)

σ ρ, σ ε, σ κ, :

Empirical constants to k-ε turbulence model (-)

References

  1. Andrade, T.H.F.: Numerical study of heavy oil transport on pipe lubrificated by water. Master Sci. Chem. Eng. Federal University of Campina Grande, PB-Brasil (2008) (In Portuguese)

    Google Scholar 

  2. ANSYS: Solver theory guide of ANSYS CFX 11.0. ANSYS Europe Ltd, USA (2006)

    Google Scholar 

  3. Arney, M.S., Ribeiro, G.S., Guevara, E., Bai, R., Joseph, D.D.: Cement-lined pipes for water lubricated transport of heavy oil. Int. J. Multiph. Flow 22, 207–221 (1996)

    Article  MATH  Google Scholar 

  4. Bai, R., Chen, K., Joseph, D.D.: Lubricated pipelining: stability of core-annular flow. Part. 5, experiments and comparison with theory. J. Fluid Mech. 240, 97–132 (1992)

    Article  Google Scholar 

  5. Bannwart, A.C.: A simple model for pressure drop in horizontal core annular flow. J. Braz. Soc. Mech. Sci. 21, 233–244 (1999)

    Google Scholar 

  6. Bannwart, A.C., Rodriguez, O.M.H., Trevisan, F.E., Vieira, F.F., de Carvalho, C.H.M.: Experimental investigation on liquid–liquid–gas flow: flow patterns and pressure-gradient. J Pet. Sci. Eng. 65, 1–13 (2009)

    Article  Google Scholar 

  7. Bensakhria, A., Peysson, Y., Antonini, G.: Experimental study of the pipeline lubrication for heavy oil transport. Oil Gas Sci. Technol. 59, 523–533 (2004)

    Article  Google Scholar 

  8. Crivelaro, K.C.O., Damacena, Y.T., Andrade, T.H.F., Lima, A.G.B., Farias Neto, S.R.: Numerical simulation of heavy oil flows in pipes using the core-annular flow technique. WIT Trans. Eng. Sci. 63, 193–203 (2009)

    Article  Google Scholar 

  9. Damacena, Y.T.: Reduction of friction during the transport of heavy oils in pipelines. Monogr. in Mech. Eng., Federal University of Campina Grande, p. 111 (2009) (In Portuguese)

    Google Scholar 

  10. Huang, A., Christodoulou, C., Joseph, D.D.: Friction factor and holdup studies for lubricated pipelining-ii laminar and k-e models for eccentric core-flow. Int. J. Multiph. Flow 20, 481–491 (1994)

    Article  MATH  Google Scholar 

  11. Joseph, D.D., Bai, R., Chen, K.P., Renardy, Y.Y.: Core-annular flows. Annu. Rev. Fluid Mech. 29, 65–90 (1997)

    Article  MathSciNet  Google Scholar 

  12. Kleinstreuer, C.: Two-phase flow: theory and applications. Taylor & Francis, New York (2003)

    MATH  Google Scholar 

  13. Oliemans, R.V.A., Ooms, G., Wu, H.L., Duijvestijn, A.: The core-annular oil/water flow turbulent-lubricating-film model and measurements in a 5 cm pipe loop. Int. J. Multiph. Flow 13, 23–31 (1987)

    Article  Google Scholar 

  14. Ooms, G., Poesio, P.: Stationary core-annular flow through a horizontal pipe. Phys. Rev. 68 (2003)

    Google Scholar 

  15. Ooms, G., Segal, A., Van Der Wees, A.J., Meerhoff, R., Oliemans, R.V.A.A.: Theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe. Int. J. Multiph. Flow 10, 41–60 (1984)

    Article  MATH  Google Scholar 

  16. Ooms, G., Vuik, C., Poesio, P.: Core-annular flow through a horizontal pipe: hydrodynamic counterbalancing of buoyancy force on core. Phys. Fluids, (2007) 19:092103-092103-17

    Google Scholar 

  17. Pereira Filho, G.H.S.: Non-isothermal heavy oils transportation in submerged risers Monogr. Mech. Eng. Federal University of Campina Grande, p. 111 (2010) (in Portuguese)

    Google Scholar 

  18. Prada, J.W.V., Bannwart, A.C.: Modeling of vertical core annular flows and application to heavy oil production.In: Proc. of ETCE/OMAE: energy for the new millen, February 14–17, New Orleans, LA (2000)

    Google Scholar 

  19. Prada, J.W., Bannwart, A.C. Pressure drop in vertical core annular flow. J. Fr. Soc. Mech. Sci. 23 (2001)

    Google Scholar 

  20. Preziosi, L., Chen, K., Joseph, D.D.: Lubricated pipelining: stability of core-annular flow. J. Fluid. Mech. 201, 323–356 (1989)

    Article  MATH  Google Scholar 

  21. Ranade, V.V.: Computational flow modeling for chemical reactor engineering. Academic Press, San Diego (2002)

    Google Scholar 

  22. Rodriguez, O.M.H., Bannwart, A.C.: Analytical model for interfacial waves in vertical core flow. J. Pet. Sci. Eng 54, 173–182 (2006)

    Article  Google Scholar 

  23. Rodriguez, O.M.H., Bannwart, A.C.: Experimental study on interfacial waves in vertical core flow. J. Pet. Sci. Eng. 54, 140–148 (2006)

    Article  Google Scholar 

  24. Rodriguez, O.M.H., Bannwart, A.C., Carvalho, C.H.M.: Pressure loss in core-annular flow: modeling, experimental investigation and full-scale experiments. J. Pet. Sci. Eng. 65, 67–75 (2009)

    Article  Google Scholar 

  25. Rovinsky, J., Brauner, N., Moalem Maron, D.: Analytical solution of laminar two-phase flow in the limit of fully eccentric core-annular configuration. Int. J. Multiph. Flow 23, 523–543 (1997)

    Article  MATH  Google Scholar 

  26. Santos, J.S.S.: Numerical study of the lubrification of submerged risers for the heavy oil transportation, Master Sci. Chem. Eng. Federal University of Campina Grande, PB- Brasil (2009) (In Portuguese)

    Google Scholar 

  27. Vanaparthy, S.H., Meiburg, E.: Variable density and viscosity, miscible displacements in capillary tubes. Eur. J. Mech B/Fluids 27, 268–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghosh, S., Mandal, T.K., Das, G., Das, P.K.: Review of oil water core annular flow. Renew. Sustain. Energy Rev. 13(8), 1957–1965 (2009)

    Article  Google Scholar 

  29. Babadagli, T., Al-Bemani, A.: Investigations on matrix recovery during steam injection into heavy-oil containing carbonate rocks. J. Petroleum Sci. Eng. 58, 259–274 (2007)

    Article  Google Scholar 

  30. Perry, J.H. (ed.): Chemical Engineer's Handbook, 4th edn. McGraw-Hill, New York (1963)

    Google Scholar 

Download references

Acknowledgments

The authors thank to Brazilian offices CNPq, ANP/UFCG-PRH-25, FINEP, and CAPES, to Brazilian private enterprises PETROBRAS and JBR Engenharia LTDa, for the granted financial support and to researcher reported in the text for their contributions for improvement of this work. The authors acknowledge also the opportunity given by the Editors to present our researches in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino Rodrigues de Farias Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Farias Neto, S.R., de Souza Santos, J.S., de Oliveira Crivelaro, K.C., Farias, F.P.M., de Lima, A.G.B. (2012). Heavy Oils Transportation in Catenary Pipeline Riser: Modeling and Simulation. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour II. Advanced Structured Materials, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22700-4_13

Download citation

Publish with us

Policies and ethics