Numerical Model for Fluid–Structure Coupled Problems Under Seismic Load

  • Danijela Brzović
  • Goran Šunjić
  • Jure Radnić
  • Alen HarapinEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 16)


This chapter briefly describes the numerical models for the simulation of fluid–structure coupled problems. The applied models are primarily intended to simulate the fluid–structure dynamic interaction in seismic conditions. The partition scheme of coupled (multi-field) problems is briefly described as the most common approach for the fluid–structure dynamic analysis. Models can simulate the most important effects of plane and spatial structures that are in direct contact with the fluid. Some of models’ possibilities are illustrated in numerical analyses of the seismic behavior for four practical examples.


Hydrodynamic Pressure Mooring Line Structure Interaction Problem Degenerate Shell Element Underwater Tunnel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bathe, K.J., Hahn, W.F.: On transient analysis of fluid-structure system. Comput. Struct. 10, 383–391 (1979)zbMATHCrossRefGoogle Scholar
  2. 2.
    Paul Dilip, K.: Efficient dynamic solutions for single and coupled multiple field problems, Ph.D. Thesis, University College of Swansea (1982)Google Scholar
  3. 3.
    Radnić, J., Damjanić, F.B., Jović, V.: Hydrodynamic pressures on rigid structures. In: Proceedings of the European Conference on Earth Engineering, Portugal (1986)Google Scholar
  4. 4.
    Radnić, J.: Fluid-structure interaction with cavitation effect. Građevinar 7, 269–275 (1987). (in Croatian)Google Scholar
  5. 5.
    Damjanić, F.B., Radnić, J.: Seismic analysis of fluid-structure interaction including cavitation. In: Proceedings of International Conference on Computer Modelling in Ocean Engineering, pp. 523–530. Balkema, Roterdam (1988)Google Scholar
  6. 6.
    Lofti, V.: Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams. Adv. Fluid Mech. 36, 207–216 (2003)Google Scholar
  7. 7.
    Lofti, V.: Seismic analysis of concrete gravity dams by decoupled modal approach in time domain. Electron. J. Struct. Eng. 3 (2003)
  8. 8.
    Sekulović, M., Mrdak, R., Pejović, R., Mijušković, O.: Analysis of seismic response of high arch dam on basis of energy balance. 13th World Conference on Earthquake Engineering, Canada, Vancouver (2004)Google Scholar
  9. 9.
    Küçükarslan, S., Coşkun, S.B., Taşkin, B.: Transient analysis of dam-reservoir interaction including the reservoir bottom effects. J. Fluids Struct. 20(8), 1073–1084 (2005)CrossRefGoogle Scholar
  10. 10.
    Pin, F.D., Idelsohn, S., Oñate, E., Aubry, R.: The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid-object interactions. Comput. Fluids 36(1), 27–38 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ortega, E., Oñate, E., Idelsohn, S.: An improved finite point method for three dimensional potential flows. Comput. Mech. 40(6), 949–963 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Radnić, J.: Modelling of strain rate effects in dynamic analysis of R/C structures. Eng. Mod. 3(1–2), 13–20 (1990)Google Scholar
  13. 13.
    Owen, D.R.J., Hinton, E.: Finite Elements in Plasticity. Pineridge Press, Swansea (1980)zbMATHGoogle Scholar
  14. 14.
    Huang, H.C.: Static and Dynamic Analyses of Plates and Shells. Springer, Heilderberg (1989)CrossRefGoogle Scholar
  15. 15.
    Bangash, M.J.H.: Concrete and Concrete Structures: Numerical Modelling and Applications. Elsevier Applied Science, New York (1989)Google Scholar
  16. 16.
    Radnić, J., Dešković, N.: Numerical model for dynamic analysis of RC structures including the strain rate effects. In: Proceedings of the 2nd International Conference on Computational Plasticity, Barcelona, pp. 65–71. Pineridge Press, Swansea (1989)Google Scholar
  17. 17.
    Phillips, D.V.: Numerical modelling of brittle materials; concrete and reinforced concrete. Lecture Notes on Nonlinear Engineering Computation, pp. C/1-78. TEMPUS-ACEM, Ljubljana, (1992)Google Scholar
  18. 18.
    Hofstetter, G., Mang, H.A.: Computational Mechanics of Reinforced Concrete Structures. Vieweg&Sohn, Weisbaden (1995)zbMATHGoogle Scholar
  19. 19.
    Harapin, A., Radnić, J., Ćubela, D.: Numerical model for composite structures with experimental confirmation. Materialwissenschaft und Werkstofftechnik 39(2), 143–156 (2008)CrossRefGoogle Scholar
  20. 20.
    Galić, M., Marović, P., Nikolić, Ž., Harapin, A.: Numerical modelling of tension influences in 3D reinforced concrete structures. In: Onate E., Owen R., Suarez B. (eds.) Proceedings of the 10th International Conference on Computational Plasticity, pp. 539/1-539/4. CIMNE, Barcelona (2009)Google Scholar
  21. 21.
    Wilson, E.L., Yuan, M., Dickens, J.M.: Dynamic analysis by direct superposition of Ritz vectors. Earthq. Eng. Struct. Dyn 10, 813–832 (1982)CrossRefGoogle Scholar
  22. 22.
    Yuan, M., Chen, P., Xiong, S., Li, Y., Wilson, E.L.: The WYD method in large eigenvalue problems. Eng. Comput. 6, 49–57 (1989)CrossRefGoogle Scholar
  23. 23.
    Mihanović, A., Schönauer, M.: Modified WYD method in large dynamics eigen problems. In: Proceedings of the 19th Symposium of Yugoslav Society of Mechanics, Bled (1989) (in Croatian)Google Scholar
  24. 24.
    Harapin, A., Radnić, J., Brzović, D.: WYD method for an eigen solution of coupled problems. Int. J. Multiphysics 3(2), 167–176 (2009)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Chopra, A.K., Chakrabarti, P.: The Koyna earthquake and the damage of Koyna dam. Bull. Seismol. Soc. Am. 63, 381–397 (1973)Google Scholar
  27. 27.
    Krishna, J., Chandrasekaran, A.R., Saini, S.S.: Analysis of Koyna accelerogram of December 11, 1967. Bull. Seismol. Soc. Am. 59(4), 1719–1731 (1969)Google Scholar
  28. 28.
    “Esperienze Statiche su Modello Della Diga di Grancarevo”, I.S.M.E.S. Instituto Sperimentale Modelli e Strutture, Bergamo, , pratica no. 271 Settembre (1960) (in Italian)Google Scholar
  29. 29.
    “Sulla Stabilita’ Della Roccia di Fondazione Della Diga di Grancarevo Verificata Anche a Mezzo Modello Geomeccanico”, I.S.M.E.S. Instituto Sperimentale Modelli e Strutture, Bergamo, Settembre (1963) (in Italian)Google Scholar
  30. 30.
    Bičkovski, V., Bojadžiev, M.: Studies of static and seismic analysis of Grančarevo dam, The Institute of Earthquake Engineering and Engineering Seismology University “Ss. Cyril and Methodius” (IZIIS) Skopje, Macedonia, Report IZIIS 88-30, (1988) (in Serbian)Google Scholar
  31. 31.
    Harapin, A.: Numerical model of fluid-structure dynamic interaction. Ph.D. Thesis, University of Split, Faculty of civil engineering (2000)Google Scholar
  32. 32.
    Pejović, R., Mrdak, R., Živaljević, R., Mijušković, O.: An analysis of seismic resistance of the Grančarevo concrete dam. Građevinar 58, 447–453 (2006). (in Croatian)Google Scholar
  33. 33.
  34. 34.
  35. 35.
    Šunjić, G.: Numerical model of seismic response of submerged structures. MD Thesis, University of Split, Faculty of civil engineering and architecture (2003) (in Croatian)Google Scholar
  36. 36.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danijela Brzović
    • 1
  • Goran Šunjić
    • 2
  • Jure Radnić
    • 1
  • Alen Harapin
    • 1
    Email author
  1. 1.Faculty of Civil Engineering and ArchitectureUniversity of SplitSplitCroatia
  2. 2.Faculty of Civil EngineeringUniversity of MostarMostarBosnia and Herzegovina

Personalised recommendations