Skip to main content

Use of Genetic and Genomic Analyses Tools to Study Dupuytren’s Disease

  • Chapter
  • First Online:
Dupuytren’s Disease and Related Hyperproliferative Disorders

Abstract

Genetic susceptibility has been suspected to contribute to development of Dupuytren’s disease (DD) since observations by Goyrand in 1833. DD has a genetic component which has been confirmed by several findings including disease presentation in monozygous twins as well as a more severe form of the disease in individuals with a positive family history of DD. Improved knowledge of the human genome followed by the development of genome-wide research tools has paved the way to a better understanding of the genetics of DD. A wide range of genetic research tools have been applied to DD over the last few decades and this review aims to summarize the tools used and the findings reported in these studies in relation to DD genetics. The genetics tools used for DD studies can be grouped into two broad categories: gene-specific studies and genome wide studies. Major findings from DNA-based studies of DD include linkage on chromosome 16q12.2 in a family with an autosomal dominant form of DD, association with HLA-alleles, Zf9 transcription factor polymorphisms, mitochondrial 16s ribosomal RNA mutation, and transforming growth factor-β receptor 1 polymorphisms (in the recessive model). In addition to studying the genes or gene loci that may contribute DD inheritance, molecular mechanisms involved in DD pathogenesis has also been studied using genetic analysis tools. The major findings of studies into differential gene expression include involvements of several cytokines and growth factors, metalloproteinases and their inhibitors, bone morphogenetic protein, and genes involved in extracellular matrix, cell–cell or cell–matrix interaction. In addition, the β-catenin pathway has been suggested to be involved in the pathogenesis of DD. A greater understanding of the genes involved in DD may potentially allow the development of better prognostic, diagnostic, and therapeutic strategies for the management of this common, yet elusive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baird KS, Crossan JF et al (1993) Abnormal growth factor and cytokine expression in Dupuytren′s contracture. J Clin Pathol 46(5):425–428

    Article  PubMed  CAS  Google Scholar 

  • Bayat A, Alansar A et al (2002a) Genetic susceptibility in Dupuytren’s disease: lack of association of a novel transforming growth factor beta(2) polymorphism in Dupuytren’s disease. J Hand Surg [Br] 27(1):47–49

    Article  CAS  Google Scholar 

  • Bayat A, Watson JS et al (2002b) Genetic susceptibility in Dupuytren’s disease. TGF-beta1 polymorphisms and Dupuytren’s disease. J Bone Joint Surg Br 84(2):211–215

    Article  PubMed  CAS  Google Scholar 

  • Bayat A, Stanley JK et al (2003a) Genetic susceptibility to Dupuytren’s disease: transforming growth factor beta receptor (TGFbetaR) gene polymorphisms and Dupuytren’s disease. Br J Plast Surg 56(4):328–333

    Article  PubMed  CAS  Google Scholar 

  • Bayat A, Watson JS et al (2003b) Genetic susceptibility to dupuytren disease: association of Zf9 transcription factor gene. Plast Reconstr Surg 111(7):2133–2139

    Article  PubMed  Google Scholar 

  • Bayat A, Walter J et al (2005) Identification of a novel mitochondrial mutation in Dupuytren’s disease using multiplex DHPLC. Plast Reconstr Surg 115(1):134–141

    PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    Article  PubMed  CAS  Google Scholar 

  • Bonnici AV, Birjandi F et al (1992) Chromosomal abnormalities in Dupuytren’s contracture and carpal tunnel syndrome. J Hand Surg [Br] 17(3):349–355

    Article  CAS  Google Scholar 

  • Bowser-Riley S, Bain AD et al (1975) Chromosome abnormalities in Dupuytren’s disease. Lancet 2(7948):1282–1283

    Article  PubMed  CAS  Google Scholar 

  • Bridge JA, Swarts SJ et al (1999) Trisomies 8 and 20 characterize a subgroup of benign fibrous lesions arising in both soft tissue and bone. Am J Pathol 154(3):729–733

    Article  PubMed  CAS  Google Scholar 

  • Brown JJ, Ollier W et al (2008) Positive association of HLA-DRB1*15 with Dupuytren’s disease in Caucasians. Tissue Antigens 72(2):166–170

    Article  PubMed  CAS  Google Scholar 

  • Casalone R, Mazzola D et al (1997) Cytogenetic and interphase cytogenetic analyses reveal chromosome instability but no clonal trisomy 8 in Dupuytren contracture. Cancer Genet Cytogenet 99(1):73–76

    Article  PubMed  CAS  Google Scholar 

  • Couch H (1938) Identical Dupuytren’s contracture in identical twins. Can Med Assoc J 39(3):225–226

    PubMed  CAS  Google Scholar 

  • Dal Cin P, De Smet L et al (1999) Trisomy 7 and trisomy 8 in dividing and non-dividing tumor cells in Dupuytren’s disease. Cancer Genet Cytogenet 108(2):137–140

    Article  PubMed  CAS  Google Scholar 

  • Dolmans GH, Werker PM et al (2011) Wnt signaling and Dupuytren’s disease. N Engl J Med 365(4):307–17

    Article  PubMed  CAS  Google Scholar 

  • Feero WG, Guttmacher AE et al (2008) The genome gets ­personal–almost. JAMA 299(11):1351–1352

    Article  PubMed  CAS  Google Scholar 

  • Furniss D, Dolmans GH et al (2011) Genome-wide association scan of Dupuytren’s disease. J Hand Surg [Am] 36(4):755–756

    Article  Google Scholar 

  • Gonzalez AM, Buscaglia M et al (1992) Basic fibroblast growth factor in Dupuytren’s contracture. Am J Pathol 141(3):661–671

    PubMed  CAS  Google Scholar 

  • Goyrand G (1833) Nouvelles recherches sur Ia rétraction permanente des doigts. Mém Acad R Méd 3:489

    Google Scholar 

  • Hindocha S, John S et al (2006) The heritability of Dupuytren’s disease: familial aggregation and its clinical significance. J Hand Surg [Am] 31(2):204–210

    Article  Google Scholar 

  • Hu FZ, Nystrom A et al (2005) Mapping of an autosomal dominant gene for Dupuytren’s contracture to chromosome 16q in a Swedish family. Clin Genet 68(5):424–429

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Article  Google Scholar 

  • Johnston P, Larson D et al (2008) Metalloproteinase gene expression correlates with clinical outcome in Dupuytren’s disease. J Hand Surg [Am] 33(7):1160–1167

    Article  Google Scholar 

  • Kaur S, Forsman M et al (2008) No gene copy number changes in Dupuytren’s contracture by array comparative genomic hybridization. Cancer Genet Cytogenet 183(1):6–8

    Article  PubMed  CAS  Google Scholar 

  • Lee LC, Zhang AY et al (2006) Expression of a novel gene, MafB, in Dupuytren’s disease. J Hand Surg [Am] 31(2):211–218

    Article  Google Scholar 

  • Ling RS (1963) The genetic factor in Dupuytren’s disease. J Bone Joint Surg Br 45:709–718

    PubMed  CAS  Google Scholar 

  • Magro G, Lanzafame S et al (1995) Co-ordinate expression of alpha 5 beta 1 integrin and fibronectin in Dupuytren’s disease. Acta Histochem 97(3):229–233

    PubMed  CAS  Google Scholar 

  • McCarty S, Syed F et al (2010) Role of the HLA system in the pathogenesis of Dupuytren’s disease. Hand 5(3):241–250

    Article  PubMed  Google Scholar 

  • Mosakhani N, Guled M et al (2010) Unique microRNA profile in Dupuytren’s contracture supports deregulation of beta-catenin pathway. Mod Pathol 23(11):1544–1552

    Article  PubMed  CAS  Google Scholar 

  • Ojwang JO, Adrianto I et al (2010) Genome-wide association scan of Dupuytren’s disease. J Hand Surg [Am] 35(12):2039–2045

    Article  Google Scholar 

  • Pan D, Watson HK et al (2003) Microarray gene analysis and expression profiles of Dupuytren’s contracture. Ann Plast Surg 50(6):618–622

    Article  PubMed  Google Scholar 

  • Pereira RS, Black CM et al (1986) Antibodies to collagen types I-VI in Dupuytren’s contracture. J Hand Surg [Br] 11(1):58–60

    Article  CAS  Google Scholar 

  • Qian A, Meals RA et al (2004) Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64(2):399–404

    Article  PubMed  CAS  Google Scholar 

  • Rehman S, Salway F et al (2008) Molecular phenotypic descriptors of Dupuytren’s disease defined using informatics analysis of the transcriptome. J Hand Surg [Am] 33(3):359–372

    Article  Google Scholar 

  • Satish L, LaFramboise WA et al (2008) Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s contracture. BMC Med Genomics 1:10

    Article  PubMed  Google Scholar 

  • Sergovich FR, Botz JS et al (1983) Nonrandom cytogenetic abnormalities in Dupuytren’s disease. N Engl J Med 308(3):162–163

    PubMed  CAS  Google Scholar 

  • Shih B, Wijeratne D et al (2009) Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg [Am] 34(1):124–136

    Article  Google Scholar 

  • Shih BB, Tassabehji M et al (2010) Genome-wide high-resolution screening in Dupuytren’s disease reveals common regions of DNA copy number alterations. J Hand Surg [Am] 35(7):1172–1183, e1177

    Article  Google Scholar 

  • Shin SS, Liu C et al (2004) Expression of bone morphogenetic proteins by Dupuytren’s fibroblasts. J Hand Surg [Am] 29(5):809–814

    Article  Google Scholar 

  • Skoog T (1948) Dupuytren’s contraction, with special reference to aetiology and improved surgical treatment. Its occurrence in epileptic: notes on knuckle-pads. Acta Chir Scand 96(Suppl):139

    Google Scholar 

  • Vi L, Feng L et al (2009) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315(20):3574–3586

    Article  PubMed  CAS  Google Scholar 

  • Wurster-Hill DH, Brown F et al (1988) Cytogenetic studies in Dupuytren contracture. Am J Hum Genet 43(3):285–292

    PubMed  CAS  Google Scholar 

  • Zhang AY, Fong KD et al (2008) Gene expression analysis of Dupuytren’s disease: the role of TGF-beta2. J Hand Surg Eur Vol 33(6):783–790

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Bayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shih, B., Watson, S., Bayat, A. (2012). Use of Genetic and Genomic Analyses Tools to Study Dupuytren’s Disease. In: Eaton, C., Seegenschmiedt, M., Bayat, A., Gabbiani, G., Werker, P., Wach, W. (eds) Dupuytren’s Disease and Related Hyperproliferative Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22697-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22697-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22696-0

  • Online ISBN: 978-3-642-22697-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics