Skip to main content

Finding Paths with Minimum Shared Edges

  • Conference paper
Computing and Combinatorics (COCOON 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

Abstract

Motivated by a security problem in geographic information systems, we study the following graph theoretical problem: given a graph G, two special nodes s and t in G, and a number k, find k paths from s to t in G so as to minimize the number of edges shared among the paths. This is a generalization of the well-known disjoint paths problem. While disjoint paths can be computed efficiently, we show that finding paths with minimum shared edges is NP-hard. Moreover, we show that it is even hard to approximate the minimum number of shared edges to within a factor of \(2^{\log^{1-\varepsilon }n}\), for any constant ε > 0. On the positive side, we show that there exists a k-approximation algorithm for the problem, using an adaption of a network flow algorithm. We design some heuristics to improve the quality of the output, and provide empirical results.

Research supported by NSERC, SUN Microsystems and HPCVL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-cost flows by double scaling. Mathematical Programming 53(1), 243–266 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis benchmark on symmetric multiprocessors. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HIPC 2005. LNCS, vol. 3769, pp. 465–476. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Castanon, D.A.: Efficient algorithms for finding the k best paths through a trellis. IEEE Trans. Aerospace and Electronic Systems 26(2), 405–410 (1990)

    Article  Google Scholar 

  4. Charikar, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for label cover problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 23–34. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows and the covering steiner problem. ACM Trans. Algorithms 1(1), 74–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  7. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. Discrete Optimization 7(4), 234–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krumke, S.O., Noltemeier, H., Schwarz, S., Wirth, H.-C., Ravi, R.: Flow improvement and network flows with fixed costs. In: Proc. Internat. Conf. Oper. Res., OR 1998, pp. 158–167 (1998)

    Google Scholar 

  10. Lee, S.-W., Wu, C.-S.: A k-best paths algorithm for highly reliable communication networks. IEICE Trans. Commun. E82-B(4), 586–590 (1999)

    Google Scholar 

  11. Nikolopoulos, S.D., Pitsillides, A., Tipper, D.: Addressing network survivability issues by finding the k-best paths through a trellis graph. In: Proc. 16th IEEE Internat. Conf. Comput. Commun., pp. 370–377 (1997)

    Google Scholar 

  12. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14(2), 325–336 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, S.Q., Yang, B., Yang, M., Wang, J.: Finding minimum-cost paths with minimum sharability. In: Proc. 26th IEEE Internat. Conf. Comput. Commun., pp. 1532–1540 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Omran, M.T., Sack, JR., Zarrabi-Zadeh, H. (2011). Finding Paths with Minimum Shared Edges. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22685-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22684-7

  • Online ISBN: 978-3-642-22685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics