A Fair and Abuse-Free Contract Signing Protocol from Boneh-Boyen Signature

  • Somayeh Heidarvand
  • Jorge L. Villar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6711)

Abstract

A fair contract signing protocol is used to enable two mistrusted parties to exchange two signatures on a given contract, in such a way that either both of them get the other party’s signature, or none of them gets anything. A new signature scheme is presented, which is a variant of Boneh and Boyen’s scheme, and building on it, we propose a new signature fair exchange protocol for which all the properties of being optimistic, setup-free and abuse-free can be proved without random oracles, and it is more efficient than the known schemes with comparable properties.

Keywords

optimistic fair exchange Boneh-Boyen signature abuse-freeness standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with off-line TTP. In: IEEE Symposium on Security and Privacy, pp. 77–85 (1998)Google Scholar
  4. 4.
    Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A fair protocol for signing contracts. IEEE Transaction on Information Theory 36(1), 40–46 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptive Adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Chaum, D., Antwerpen, H.V.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Damgård, I.: Practical and provably secure release of a secret and exchange of signatures. Journal of Cryptology 8(4), 201–222 (1995)CrossRefGoogle Scholar
  11. 11.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Deng, R., Gong, L., Lazar, A., Wang, W.: Practical protocol for certified electronic mail. Journal of Network and System Management 4(3), 279–297 (1996)CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Lee, P., Yum, D.: Optimistic Fair Exchange in a Multi-user Setting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Reyzin, L.: Breaking and repairing fair exchange from PODC 2003. In: Proc. of ACM Workshop On Digital Rights and Management (DRM 2003), pp. 47–54 (2003)Google Scholar
  15. 15.
    Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Garay, J.A., Jakobsson, M., Mackenzie, P.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: A simple protocols for signing contracts. In: Advances in Cryptology — CRYPTO 1983, pp. 133–136. Plenum Press, New York (1984)Google Scholar
  18. 18.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange secure in the multi-user setting and chosen-key model without random oracles. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous Optimistic Fair Exchange. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally convertible directed signatures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Liskov, M., Micali, S.: Online-Untransferable Signatures. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 248–267. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Markowitch, O., Saeednia, S.: Optimistic Fair Exchange with Transparent Signature Recovery. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 329–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: Proc. of the 22th Annual ACM Symp. on Principles of Distributed Computing (PODC 2003), pp. 12–19 (2003)Google Scholar
  27. 27.
    Park, J.M., Chong, E., Siegel, H.J., Ray, I.: Constructing Fair Exchange Protocols for E-commerce Via Distributed Computation of RSA Signatures. In: Proc. of the 22th Annual ACM Symp. on Principles of Distributed Computing (PODC 2003), pp. 172–181 (2003)Google Scholar
  28. 28.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  29. 29.
    Pfitzmann, B., Schunter, M., Waidner, M.: Optimal efficiency of optimistic contract signing. In: Proc. of the 17th Annual ACM Symp. on Principles of Distributed Computing (PODC 1998), pp. 113–122 (1998)Google Scholar
  30. 30.
    Piva, F.R., Monteiro, J.R.M., Dahab, R.: Regarding timeliness in the context of fair exchange. In: Proc. of Int. Conf. on Network and Service Security (N2S 2009), pp. 1–6 (2009)Google Scholar
  31. 31.
    Wang, G.: An Abuse-Free Fair Contract Signing Protocol Based on the RSA Signature. In: Proc. of WWW 2005. ACM, New York (2005) 1-59593-046-9/05/0005 Google Scholar
  32. 32.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Somayeh Heidarvand
    • 1
  • Jorge L. Villar
    • 1
  1. 1.Universitat Politècnica de CatalunyaSpain

Personalised recommendations