Skip to main content

On the Maximum Locally Clustered Subgraph and Some Related Problems

  • Conference paper
  • 1026 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6831)


Motivated by detecting false friend links in online social networks, we define two optimization problems based on the balance theory for structural transitivity in social networks. We give a polynomial time algorithm for one problem and show the NP-hardness of the other. For the NP-hard problem, we show some polynomial time solvable cases and give a 2-approximation algorithm for a restricted version. We also propose a heuristic algorithm for a more general version of the problem.


  • algorithm
  • social network analysis
  • time complexity
  • NP-hard
  • approximation algorithm

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, Y.Y., Han, S., Kwak, H., Jeong, S.H.: Analysis of topological characteristics of huge online social networking services. In: Proc. of the 16th international conference on World Wide Web, pp. 835–844 (2007)

    Google Scholar 

  2. Chin, A., Chignell, M.: Finding evidence of community from blogging co-citations: a social network analytic approach. In: Proc. of 3rd IADIS International Conference Web Based Communities 2006 (WBC 2006), San Sebastian, Spain, pp. 191–200 (2006)

    Google Scholar 

  3. Davis, J.A.: Structural balance, mechanical solidarity, and interpersonal relations. American Journal of Sociology 68, 444–462; Electronics and Communications in Japan (Part I: Communications) 89(12), 88 – 96 (1963)

    CrossRef  Google Scholar 

  4. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: STOC, pp. 448–456 (1983)

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to The Theory of NP-Completeness. Freeman, NewYork (1979)

    MATH  Google Scholar 

  6. Hanneman, R.A., Riddle, M.: Introduction to Social Network Methods (2005),

  7. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: An analysis of a microblogging community. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439, pp. 118–138. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  8. Kuan, S.T., Wu, B.Y., Lee, W.J.: Finding friend groups in Blogsphere. In: Proc. of the 22nd International Conference on Advanced Information Networking and Applications, pp. 1046–1050 (2008)

    Google Scholar 

  9. Li, Q., Xu, M., Hou, J., Liu, F.: Web classification based on latent semantic indexing. Journal of Communication and Computer 3(1), 24–27 (2006)

    Google Scholar 

  10. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic Routing in Social Networks. Proc. of the National Academy of Sciences (PNAS) 102(33), 11623–11628 (2005)

    CrossRef  Google Scholar 

  11. Lin, J., Halavais, A., Zhang, B.: Blog network in America: blogs as indicators of relationships among U.S. cities. Connections 27(2), 15–23 (2007)

    Google Scholar 

  12. Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|}|E|)\) algorithm for finding maximum matching in general graphs. In: FOCS, pp. 17–27 (1980)

    Google Scholar 

  13. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proc. of the 5th ACM/USENIX Internet Measurement Conference (IMC 2007), San Diego, CA (2007)

    Google Scholar 

  14. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the flickr social network. In: Proc. of WOSN, Seattle, WA (2008)

    Google Scholar 

  15. Shen, D., Sun, J.T., Yang, Q., Chen, Z.: Latent friend mining from blog data. In: Sixth IEEE International Conference on Data Mining (ICDM 2006), pp. 552–561 (2006)

    Google Scholar 

  16. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)

    CrossRef  MATH  Google Scholar 

  17. Wikipedia, .

  18. Yang, C.-P., Liu, C.-Y., Wu, B.Y.: Influence clubs in social networks. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, LNAI vol. 6422, pp. 1–10. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, B.Y. (2011). On the Maximum Locally Clustered Subgraph and Some Related Problems. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22615-1

  • Online ISBN: 978-3-642-22616-8

  • eBook Packages: Computer ScienceComputer Science (R0)