Geometrical Regular Languages and Linear Diophantine Equations

  • Jean-Marc Champarnaud
  • Jean-Philippe Dubernard
  • Franck Guingne
  • Hadrien Jeanne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)

Abstract

We present a new method for checking whether a regular language over an arbitrarily large alphabet is semi-geometrical or whether it is geometrical. This method makes use first of the partitioning of the state diagram of the minimal automaton of the language into strongly connected components and secondly of the enumeration of the simple cycles in each component. It is based on the construction of systems of linear Diophantine equations the coefficients of which are deduced from the the set of simple cycles. This paper addresses the case of a strongly connected graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanpain, B., Champarnaud, J.-M., Dubernard, J.P.: Geometrical languages. In: Martin-Vide, C. (ed.) International Conference on Language Theory and Automata (LATA 2007). GRLMC Universitat Rovira I Virgili, vol. 35(07), pp. 127–138 (2007)Google Scholar
  2. 2.
    Brauer, A.: On a problem of partitions. Amer. J. Math. 64, 299–312 (1942)CrossRefMATHGoogle Scholar
  3. 3.
    Carpentier, F.: Systèmes d’équations diophantiennes et test de géométricité sur un langage rationnel. Rapport de master, Université de Rouen, France (2008)Google Scholar
  4. 4.
    Champarnaud, J.-M., Dubernard, J.P., Jeanne, H.: Geometricity of binary regular languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 178–189. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Champarnaud, J.-M., Dubernard, J.P., Jeanne, H.: Regular geometrical languages and tiling the plane. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 69–78. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Champarnaud, J.-M., Hansel, G.: Puissances des matrices booléennes. Unsubmitted manuscript, Université de Rouen, France (2005)Google Scholar
  7. 7.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    d’Alessandro, F., Intrigila, B., Varricchio, S.: On some counting problems for semi-linear sets. CoRR, abs/0907.3005 (2009)Google Scholar
  9. 9.
    Eilenberg, S.: Automata, languages and machines, vol. B. Academic Press, New York (1976)MATHGoogle Scholar
  10. 10.
    Geldenhuys, J., van der Merwe, B., van Zijl, L.: Reducing nondeterministic finite automata with SAT solvers. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS, vol. 6062, pp. 81–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Geniet, D., Largeteau, G.: WCET free time analysis of hard real-time systems on multiprocessors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Golomb, S.W.: Polyominoes: Puzzles, patterns, problems, and packings. Princeton Academic Press, London (1996)MATHGoogle Scholar
  13. 13.
    LinBox Group. Linbox project: Exact computational linear algebra (2002), http://www.linalg.org
  14. 14.
    Holladay, J.C., Varga, R.S.: On powers of non negative matrices. Proc. Amer. Math. Soc. 9(4), 631–634 (1958)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies 34, 3–41 (1956); Ann. Math. StudiesMathSciNetGoogle Scholar
  16. 16.
    Mordell, L.: Diophantine equations. Academic Press, London (1969)MATHGoogle Scholar
  17. 17.
    Mulders, T., Storjohann, A.: Certified dense linear system solving. J. Symb. Comput. 37(4), 485–510 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, 112–137 (1957)Google Scholar
  19. 19.
    Nerode, A.: Linear automata transformation. Proceedings of AMS 9, 541–544 (1958)CrossRefMATHGoogle Scholar
  20. 20.
    Paranthoën, T.: Génération aléatoire et structure des automates à états finis. PhD, Université de Rouen, France (2004)Google Scholar
  21. 21.
    Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Robinson, R.W.: Counting strongly connected finite automata. In: Alavi, Y., et al. (eds.) Graph Theory with Applications to Algorithms and Computer Science, pp. 671–685. Wiley, New York (1985)Google Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1986)MATHGoogle Scholar
  24. 24.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2, 211–216 (1973)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    The Polylib Team. Polylib User’s Manual. IRISA, France (2002), www.irisa.fr/polylib/doc/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean-Marc Champarnaud
    • 1
  • Jean-Philippe Dubernard
    • 1
  • Franck Guingne
    • 2
  • Hadrien Jeanne
    • 1
  1. 1.LITIS, Université de RouenFrance
  2. 2.I3S, Université de Nice - Sophia Antipolis & CNRSFrance

Personalised recommendations