On Restarting Automata with Window Size One

  • Friedrich Otto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)

Abstract

The restarting automaton is a machine model that is motivated by the technique of analysis by reduction from linguistics. It consists of a finite-state control, a flexible tape with end markers and a read/write window of fixed size. This paper begins with a short description of the general model of the restarting automaton and its major variants. In particular, the question for the influence of the size of the read/write window on the expressive power of the various types of restarting automata is addressed. The main part then focuses on the weakest model of the restarting automaton and its variants: the so-called R-automaton with a read/write window of size one (R(1)-automaton for short). It is well-known that R(1)-automata only accept regular languages, but it will be shown that several seemingly rather powerful extensions have just the same expressive power. Accordingly it is of interest to study the descriptional complexity of these types of restarting automata in relation to the R(1)-automata on the one hand and the (deterministic and nondeterministic) finite-state acceptors on the other hand. Then various types of cooperating distributed systems (CD-systems) of deterministic R(1)-automata are presented. If all components of such a system are stateless, then the language accepted by the system has a semi-linear Parikh image, and actually the rational trace languages and the context-free trace languages have been characterized in terms of certain CD-systems of stateless deterministic R(1)-automata. Also for these devices the question for their descriptional complexity will be addressed in short.

Keywords

Restarting automaton stateless device cooperating distributed system language hierarchy descriptional complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aalbersberg, I., Rozenberg, G.: Theory of traces. Theor. Comput. Sci. 60, 1–82 (1988)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten Mathematik und Mechanik 38. Teubner Studienbücher. Teubner, Stuttgart (1979)Google Scholar
  3. 3.
    Bertoni, A., Mauri, G., Sabadini, N.: Membership problems for regular and context-free trace languages. Inform. Comput. 82, 135–150 (1989)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Proc. Letters 43, 185–190 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Book, R.: Grammars with time functions. PhD thesis. Harvard University, Cambridge, Massachusetts (1969)Google Scholar
  6. 6.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inform. Comput. 141, 1–36 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chytil, M., Plátek, M., Vogel, J.: A note on the Chomsky hierarchy. Bull. EATCS 27, 23–30 (1985)Google Scholar
  8. 8.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1994)MATHGoogle Scholar
  9. 9.
    Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 155–213. Springer, Berlin (1997)CrossRefGoogle Scholar
  11. 11.
    Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  12. 12.
    Dikovsky, A., Modina, L.: Dependencies on the other side of the curtain. Traitement Automatique des Langues 41, 79–111 (2000)Google Scholar
  13. 13.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: Contextual grammars and formal languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 237–293. Springer, Berlin (1997)CrossRefGoogle Scholar
  14. 14.
    Gladkij, A.: On the complexity of derivations for context-sensitive grammars. Algebra i Logika 3, 29–44 (1964) (in Russian)Google Scholar
  15. 15.
    Gramatovici, R., Martín-Vide, C.: 1-contextual grammars with sorted dependencies. In: Spoto, F., Scollo, G., Nijholt, A. (eds.) 3rd AMAST Workshop on Language Processing, Proc. Universiteit Twente, Enschede, pp. 99–109 (2003)Google Scholar
  16. 16.
    Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)MATHGoogle Scholar
  17. 17.
    Holzer, M., Kutrib, M., Reimann, J.: Descriptional complexity of deterministic restarting automata. In: Meregetti, C., Palano, B., Pighizzini, P., Wotschke, D. (eds.) DCFS 2005, pp. 158–169. Proc. Università degli Studi di Milano, Milan (2005)Google Scholar
  18. 18.
    Holzer, M., Kutrib, M., Reimann, J.: Non-recursive trade-offs for deterministic restarting automata. J. Autom. Lang. Comb. 12, 195–213 (2007)MATHMathSciNetGoogle Scholar
  19. 19.
    Hundeshagen, N., Otto, F.: Characterizing the regular languages by nonforgetting restarting automata. In: Leporati, A. (ed.) DLT 2011. LNCS, vol. 6795, pp. 288–299. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Jančar, P., Mráz, F., Plátek, M.: A taxonomy of forgetting automata. In: Borzyszkowski, A., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 527–536. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  21. 21.
    Jančar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages. Acta. Inf. 33, 409–420 (1996)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewriting. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 119–136. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Different types of monotonicity for restarting automata. In: Arvind, V., Ramanujam, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 343–355. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation. J. Autom. Lang. Comb. 4, 287–311 (1999)MATHMathSciNetGoogle Scholar
  26. 26.
    Jurdziński, T., Otto, F.: Shrinking restarting automata. Intern. J. Found. Comp. Sci. 18, 361–385 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and restarting automata. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) AFL 2008, pp. 257–268. Proc. Computer and Automation Research Institute, Hungarian Academy of Sciences (2008)Google Scholar
  28. 28.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and restarting automata. Intern. J. Found. Comp. Sci. 21, 781–798 (2010)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Kutrib, M., Reimann, J.: Optimal simulations of weak restarting automata. In: Geffert, V., Pighizzini, G. (eds.) Workshop Descriptional Complexity of Formal Systems, Proc., Košice, Slovakia, Institute of Computer Science, P.J. Šafàrik University, pp. 81–92 (2007)Google Scholar
  30. 30.
    Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restarting automata. Inform. Comput. 206, 1152–1160 (2008)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Marcus, S.: Contextual grammars and natural languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 215–235. Springer, Berlin (1997)CrossRefGoogle Scholar
  32. 32.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. Assoc. Comput. Mach. 35, 324–344 (1988)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Messerschmidt, H., Otto, F.: On nonforgetting restarting automata that are deterministic and/or monotone. In: Grigoriev, D., Harrison, J., Hirsch, E. (eds.) CSR 2006. LNCS, vol. 3967, pp. 247–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting automata. Intern. J. Found. Comp. Sci. 18, 1333–1342 (2007)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Messerschmidt, H., Otto, F.: Strictly deterministic CD-systems of restarting automata. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 424–434. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Messerschmidt, H., Otto, F.: On deterministic CD-systems of restarting automata. Intern. J. Found. Comp. Sci. 20, 185–209 (2009)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-Zuständen. In: Bordihn, H. (ed.) Proceedings of two Workshop ’Formale Sprachen in der Linguistik und 14.Theorietag Automaten und Formale Sprachen’ pp. 111–116. Proc. Institut für Informatik, Universität Potsdam (2004)Google Scholar
  38. 38.
    Mráz, F.: Lookahead hierarchies of restarting automata. J. Autom. Lang. Comb. 6, 493–506 (2001)MATHMathSciNetGoogle Scholar
  39. 39.
    Mráz, F., Otto, F., Plátek, M.: On the gap-complexity of simple RL-automata. In: Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 83–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  40. 40.
    Nagy, B., Otto, F.: CD-systems of stateless deterministic R-automata with window size one. Kasseler Informatikschriften 2/2010, Universität Kassel (April 2010), https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2010042732682
  41. 41.
    Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata accept all rational trace languages. In: Dediu, A., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 463–474. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Nagy, B., Otto, F.: An automata-theoretical characterization of context-free trace languages. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 406–417. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Nagy, B., Otto, F.: Deterministic pushdown CD-systems of stateless deterministic R(1)-automata. In: Dömösi, P. (ed.) AFL 2011, Proc. Computer and Automation Research Institute, Hungarian Academy of Sciences (to appear, 2011)Google Scholar
  44. 44.
    Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: Bel-Enguix, G., Dahl, V., De La Puente, A. (eds.) BILC 2011, pp. 3–13. Proc. SciTePress, Portugal (2011)Google Scholar
  45. 45.
    Nagy, B., Otto, F.: Globally deterministic CD-systems of stateless R(1)-automata. In: Dediu, A., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 390–401. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  46. 46.
    Niemann, G., Otto, F.: Restarting automata, Church-Rosser languages, and representations of r.e. languages. In: Rozenberg, G., Thomas, W. (eds.) Proc. DLT 1999, pp. 103–114. World Scientific, Singapore (2000)Google Scholar
  47. 47.
    Niemann, G., Otto, F.: On the power of RRWW-automata. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions. Essays in Honour of Gabriel Thierrin, On the Occasion of His 80th Birthday, pp. 341–355. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  48. 48.
    Niemann, G., Otto, F.: Further results on restarting automata. In: Ito, M., Imaoka, T. (eds.) Proc. on Words, Languages and Combinatorics III, pp. 353–369. World Scientific, Singapore (2003)Google Scholar
  49. 49.
    Reimann, J.: Beschreibungskomplexität von Restart-Automaten. PhD thesis, Naturwissenschaftliche Fachbereiche, Justus-Liebig-Universität Giessen (2007)Google Scholar
  50. 50.
    Schluter, N.: On lookahead hierarchies for monotone and deterministic restarting automata with auxiliary symbols (Extended abstract). In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 440–441. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  51. 51.
    Schluter, N.: Restarting automata with auxiliary symbols and small lookahead. In: Dediu, A., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 499–510. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  52. 52.
    Straňáková, M.: Selected types of pg-ambiguity. The Prague Bull. Math. Ling. 72, 29–57 (1999)Google Scholar
  53. 53.
    Stranáková, M.: Selected types of pg-ambiguity: Processing based on analysis by reduction. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2000. LNCS (LNAI), vol. 1902, pp. 139–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  54. 54.
    Černo, P., Mráz, F.: Clearing restarting automata. Fund. Inform. 104, 17–54 (2010)MATHMathSciNetGoogle Scholar
  55. 55.
    von Solms, S.: The characterization by automata of certain classes of languages in the context sensitive area. Inform. Contr. 27, 262–271 (1975)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Friedrich Otto
    • 1
  1. 1.Fachbereich Elektrotechnik, InformatikUniversität KasselKasselGermany

Personalised recommendations