Note on Reversal of Binary Regular Languages

  • Galina Jirásková
  • Juraj Šebej
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)

Abstract

We present binary deterministic finite automata of n states that meet the upper bound 2 n on the state complexity of reversal. The automata have a single final state and are one-cycle-free-path, thus the witness languages are deterministic union-free. This result allows us to describe a binary language such that the nondeterministic state complexity of the language and of its complement is n and n + 1, respectively, while the state complexity of the language is 2 n . We also show that there is no regular language with state complexity 2 n such that both the language and its complement have nondeterministic state complexity n.

Keywords

Regular languages reversal state complexity nondeterministic state complexity deterministic union-free languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzozowski, J.A.: Canonical Regular Expressions and Minimal State Graphs for Definite Events. In: Proceedings of the Symposium on Mathematical Theory of Automata, New York, NY, April 24-26 (1962); Fox, J. (ed.) MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn, NY (1963)Google Scholar
  2. 2.
    Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 84–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Champarnaud, J.-M., Khorsi, A., Paranthoën, T.: Split and join for minimizing: Brzozowski’s algorithm, http://jmc.feydakins.org/ps/c09psc02.ps
  5. 5.
    Jirásková, G., Masopust, T.: Complexity in union-free regular languages. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Lupanov, U.I.: A comparison of two types of finite automata. Problemy Kibernetiki 9, 321–326 (1963) (in Russian)Google Scholar
  8. 8.
    Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theor. Comput. Sci. 330, 349–360 (2005)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966) (in Russian); English translation: Cybernetics 2, 6–9 (1966)MathSciNetGoogle Scholar
  10. 10.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoret. Comput. Sci. 320, 315–329 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)MATHGoogle Scholar
  13. 13.
    Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D. (ed.) Proc. 10th ITAT, pp. 47–54. Šafárik University, Košice (2010)Google Scholar
  14. 14.
    Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Galina Jirásková
    • 1
  • Juraj Šebej
    • 2
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Computer ScienceP.J. Šafárik UniversityKošiceSlovakia

Personalised recommendations