State Complexity of Four Combined Operations Composed of Union, Intersection, Star and Reversal

  • Yuan Gao
  • Sheng Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)

Abstract

In this paper, we study the state complexities of union and intersection combined with star and reversal, respectively. We obtain the exact bounds for these combined operations on regular languages and show that, as usually, they are different from the mathematical compositions of the state complexities of their individual participating operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of catenation combined with star and reversal. In: Proceedings of Descriptional Complexity of Formal Systems 12th Workshop, Saskatoon, pp. 74–85 (2010)Google Scholar
  2. 2.
    Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of catenation combined with union and intersection. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 95–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)MATHMathSciNetGoogle Scholar
  5. 5.
    Daley, M., Domaratzki, M., Salomaa, K.: State complexity of orthogonal catenation. In: Proceedings of Descriptional Complexity of Formal Systems 10th Workshop, Charlottetown, pp. 134–144 (2008)Google Scholar
  6. 6.
    Domaratzki, M.: State complexity and proportional removals. Journal of Automata, Languages and Combinatorics 7, 455–468 (2002)MATHMathSciNetGoogle Scholar
  7. 7.
    Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer Science 410(24-25), 2377–2392 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of State Complexity of Combined Operations. Theoretical Computer Science 410(35), 3272–3280 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: star of catenation and star of Reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)MATHMathSciNetGoogle Scholar
  10. 10.
    Gao, Y., Yu, S.: State complexity approximation. Electronic Proceedings in Theoretical Computer Science 3, 121–130 (2009)CrossRefGoogle Scholar
  11. 11.
    Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison Wesley, Reading (2001)MATHGoogle Scholar
  13. 13.
    Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation of regular languages. International Journal of Foundations of Computer Science 16, 511–529 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Jirásková, G.: State complexity of some operations on binary regular languages. Theoretical Computer Science 330, 287–298 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jirásková, G., Okhotin, A.: State complexity of cyclic shift. In: Proceedings of Descriptional Complexity of Formal Systems 7th Workshop, Como, pp. 182–193 (2005)Google Scholar
  16. 16.
    Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of intersection, Turku Center for Computer Science TUCS Technical Report No. 825 (2007)Google Scholar
  17. 17.
    Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language operations combined with reversal. Information and Computation 206, 1178–1186 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Mathematics Doklady 11, 1373–1375 (1970)MATHGoogle Scholar
  19. 19.
    Pighizzini, G., Shallit, J.O.: Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13, 145–159 (2002)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 114–125 (1959)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383, 140–152 (2007)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320, 293–313 (2004)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Yu, S.: State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)MATHMathSciNetGoogle Scholar
  24. 24.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoretical Computer Science 125, 315–328 (1994)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  26. 26.
    Yu, S.: On the state complexity of combined operations. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 11–22. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuan Gao
    • 1
  • Sheng Yu
    • 1
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations