Remarks on Separating Words

  • Erik D. Demaine
  • Sarah Eisenstat
  • Jeffrey Shallit
  • David A. Wilson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)


The separating words problem asks for the size of the smallest DFA needed to distinguish between two words of length ≤ n (by accepting one and rejecting the other). In this paper we survey what is known and unknown about the problem, consider some variations, and prove several new results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986); Erratum 302, 497–498 (2003)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Currie, J., Petersen, H., Robson, J.M., Shallit, J.: Separating words with small grammars. J. Automata, Languages, and Combinatorics 4, 101–110 (1999)MATHMathSciNetGoogle Scholar
  3. 3.
    Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205, 1652–1670 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Gimadeev, R.A., Vyalyi, M.N.: Identical relations in symmetric groups and separating words with reversible automata. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 144–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Goralčík, P., Koubek, V.: On discerning words by automata. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 116–122. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  6. 6.
    Nozaki, A.: Equivalence problem of non-deterministic finite automata. J. Comput. System Sci. 18, 8–17 (1979)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Robson, J.M.: Separating strings with small automata. Inform. Process. Lett. 30, 209–214 (1989)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Robson, J.M.: Separating words with machines and groups. RAIRO Inform. Théor. App. 30, 81–86 (1996)MATHMathSciNetGoogle Scholar
  9. 9.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  10. 10.
    Shallit, J., Breitbart, Y.: Automaticity I: Properties of a measure of descriptional complexity. J. Comput. System Sci. 53, 10–25 (1996)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    To, A.W.: Unary finite automata vs. arithmetic progressions. Inform. Process. Lett. 109, 1010–1014 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Sarah Eisenstat
    • 1
  • Jeffrey Shallit
    • 2
  • David A. Wilson
    • 1
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations