On the Number of Components and Clusters of Non-returning Parallel Communicating Grammar Systems

  • Erzsébet Csuhaj-Varjú
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6808)


In this paper, we study the size complexity of non-returning parallel communicating grammar systems. First we consider the problem of determining the minimal number of components necessary to generate all recursively enumerable languages. We present a construction which improves the currently known best bounds of seven (with three predefined clusters) and six (in the non-clustered case) to five, in both cases (having four clusters in the clustered variant). We also show that in the case of unary languages four components are sufficient. Then, by defining systems with dynamical clusters, we investigate the minimal number of different query symbols necessary to obtain computational completeness. We prove that for this purpose three dynamical clusters (which means two different query symbols) are sufficient in general, which (although the number of components is higher) can also be interpreted as an improvement in the number of necessary clusters when compared to the case of predefined clusters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ter Beek, M.H.: Teams in grammar systems: hybridity and weak rewriting. Acta Cybernetica 12(4), 427–444 (1996)MATHMathSciNetGoogle Scholar
  2. 2.
    ter Beek, M.H.: Teams in grammar systems: sub-context-free cases. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 197–216. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Topics in Computer Mathematics, vol. 5. Gordon and Breach Science Publishers, Yverdon (1994)MATHGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Mitrana, V.: Dynamical Teams in Eco-Grammar Systems. Fundamenta Informaticae 44(1-2), 83–94 (2000)MATHMathSciNetGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: PC grammar systems with clusters of components. International Journal of Foundations of Computer Science 22(1), 203–212 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Csuhaj-Varjú, E., Păun, G., Vaszil, G.: PC grammar systems with five context-free components generate all recursively enumerable languages. Theoretical Computer Science 299(1-3), 785–794 (2003)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Vaszil, G.: On the size complexity of non-returning context-free PC grammar systems. In: Dassow, J., Pighizzini, G., Truthe, B. (eds.) Proceedings Eleventh International Workshop on Descriptional Complexity of Formal Systems, Electronic Proceedings in Theoretical Computer Science, vol. 3, pp. 91–101 (2009)Google Scholar
  8. 8.
    Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, vol. II, ch. 4, pp. 155–213. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Fischer, P.C.: Turing machines with restricted memory access. Information and Control 9, 364–379 (1966)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kari, L., Mateescu, A., Păun, G., Salomaa, A.: Teams in cooperating grammar systems. Journal of Experimental and Theoretical Artificial Intelligence 7, 347–359 (1995)CrossRefMATHGoogle Scholar
  11. 11.
    Lázár, K., Csuhaj-Varjú, E., Lőrincz, A., Vaszil, G.: Dynamically formed Clusters of Agents in Eco-grammar Systems. International Journal of Foundations of Computer Science 20(2), 293–311 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mateescu, A., Mitrana, V., Salomaa, A.: Dynamical teams of cooperating grammar systems. Analele Universitatii Bucuresti. Matematica Inform. 42(43), 3–14 (1993)MATHMathSciNetGoogle Scholar
  13. 13.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G.: Prescribed teams of grammars. Acta Informatica 31(6), 525–537 (1994)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Păun, G., Sântean, L.: Parallel communicating grammar systems: The regular case. Annals of the University of Bucharest, Mathematics-Informatics Series 38(2), 55–63 (1989)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • György Vaszil
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations