Skip to main content

Fragments of Small Nucleolar RNAs as a New Source for Noncoding RNAs

  • Chapter
  • First Online:
  • 1658 Accesses

Abstract

Small nucleolar RNAs (snoRNAs) are small, nonprotein-coding RNAs that accumulate in the nucleolus. So far, these RNAs have been implicated in modification of rRNAs, tRNAs, and snRNAs. snoRNAs can be grouped into two classes: C/D box and H/ACA box snoRNAs that direct 2′-O-methylation and pseudouridylation, respectively. However, for numerous snoRNAs, no target RNAs have been identified. High-throughput sequencing and detailed analysis of RNase protection experiments have demonstrated that some snoRNAs are processed into smaller RNAs. These processed snoRNAs are 20–100 nt in length, are mostly nuclear and do not form canonical snoRNPs, that is, they do not associate with methylase or pseudouridylation activity. They can act by binding to pre-mRNAs in the nucleus where they regulate alternative pre-mRNA splicing. Thus, processed snoRNAs (psnoRNAs) represent a novel class of regulatory RNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNA

psnoRNAs:

Processed snoRNAs

References

  • Atzorn V, Fragapane P, Kiss T (2004) U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol Cell Biol 24(4):1769–1778

    Article  PubMed  CAS  Google Scholar 

  • Bazeley PS, Shepelev V, Talebizadeh Z, Butler MG, Fedorova L, Filatov V, Fedorov A (2008) snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. Gene 408(1–2):172–179

    Article  PubMed  CAS  Google Scholar 

  • Beltrame M, Tollervey D (1995) Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J 14(17):4350–4356

    PubMed  CAS  Google Scholar 

  • Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39(2):675–686

    Article  PubMed  CAS  Google Scholar 

  • Butler MG, Hanchett JM, Thompson TE (2006) Clinical findings and natural history of Prader-Willi syndrome. In: Butler MG, Lee PDK, Whitman BY (eds) Managment of Prader-Willi syndrome. Springer, New York, pp 3–48

    Chapter  Google Scholar 

  • Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I (1996) Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J 15(5):1121–1131

    PubMed  CAS  Google Scholar 

  • Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316

    Article  PubMed  CAS  Google Scholar 

  • Chanfreau G, Legrain P, Jacquier A (1998) Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 284(4):975–988. doi:10.1006/jmbi.1998.2237

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB, Boeke JD (1991) Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65(3):483–492

    Article  PubMed  CAS  Google Scholar 

  • Charpentier B, Muller S, Branlant C (2005) Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res 33(10):3133–3144

    Article  PubMed  CAS  Google Scholar 

  • Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160

    Article  PubMed  CAS  Google Scholar 

  • Darzacq X, Kiss T (2000) Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5′,3′-terminal stem structure. Mol Cell Biol 20(13):4522–4531

    Article  PubMed  CAS  Google Scholar 

  • de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O’Rahilly S, Froguel P, Farooqi IS, Blakemore AI (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18(17):3257–3265

    Article  PubMed  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27(7):344–351

    Article  PubMed  CAS  Google Scholar 

  • Decatur WA, Fournier MJ (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem 278(2):695–698. doi:10.1074/jbc.R200023200

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94(2):83–88

    Article  PubMed  CAS  Google Scholar 

  • Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DE, Humby T, Wilkinson LS, Isles AR (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18(12):2140–2148

    Article  PubMed  CAS  Google Scholar 

  • Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 18:1196–1201

    Article  PubMed  CAS  Google Scholar 

  • Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32(4):519–528

    Article  PubMed  CAS  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14(3):313–318

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Pogacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14(3):319–327

    Article  PubMed  CAS  Google Scholar 

  • Gardner PP, Bateman A, Poole AM (2010) SnoPatrol: how many snoRNA genes are there? J Biol 9(1):4

    PubMed  Google Scholar 

  • Giorgi C, Fatica A, Nagel R, Bozzoni I (2001) Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 20(23):6856–6865

    Article  PubMed  CAS  Google Scholar 

  • Hertel J, Hofacker IL, Stadler PF (2008) SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 24(2):158–164

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Shu MD, Steitz JA (2003) Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Mol Cell 12(1):113–123

    Article  PubMed  CAS  Google Scholar 

  • Hutzinger R, Feederle R, Mrazek J, Schiefermeier N, Balwierz PJ, Zavolan M, Polacek N, Delecluse HJ, Huttenhofer A (2009) Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLoS Pathog 5(8):e1000547

    Article  PubMed  Google Scholar 

  • Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, Bale TL, Blendy JA, Nishikura K (2008) Dysregulated editing of serotonin 2 C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28(48):12834–12844

    Article  PubMed  CAS  Google Scholar 

  • Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Yasuda J, Carninci P, Hayashizaki Y (2008) Hidden layers of human small RNAs. BMC Genom 9:157

    Article  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2 C. Science 311(5758):230–232

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Khanna A, Zhang Z, Hui J, Balwierz P, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Kiss AM, Jady BE, Bertrand E, Kiss T (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 24(13):5797–5807

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schubeler D, Oertner TG, Schratt G, Bibel M, Roska B, Filipowicz W (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141(4):618–631

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Allmang C, Chanfreau G, Petfalski E, Lafontaine DL, Tollervey D (2000) Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol 20(15):5415–5424

    Article  PubMed  CAS  Google Scholar 

  • Lafontaine DL, Tollervey D (1999) Nop58p is a common component of the box C + D snoRNPs that is required for snoRNA stability. RNA 5(3):455–467

    Article  PubMed  CAS  Google Scholar 

  • Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443(7109):302–307

    Article  PubMed  CAS  Google Scholar 

  • Lukowiak AA, Narayanan A, Li ZH, Terns RM, Terns MP (2001) The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7(12):1833–1844

    PubMed  CAS  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8(3):209–220

    Article  PubMed  CAS  Google Scholar 

  • Meier UT (2005) The many facets of H/ACA ribonucleoproteins. Chromosoma 114(1):1–14. doi:10.1007/s00412-005-0333-9

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Cheng J, Collins K (1999) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19(1):567–576

    PubMed  CAS  Google Scholar 

  • Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11–13 duplication seen in autism. Cell 137(7):1235–1246

    Article  PubMed  Google Scholar 

  • Omer AD, Ziesche S, Ebhardt H, Dennis PP (2002) In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proc Natl Acad Sci USA 99(8):5289–5294

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI (2011) Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res 39(9):3879–3891

    Article  PubMed  CAS  Google Scholar 

  • Peculis BA, Steitz JA (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73(6):1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Pelczar P, Filipowicz W (1998) The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol 18(8):4509–4518

    PubMed  CAS  Google Scholar 

  • Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP (2003) Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci 18(11):3089–3096

    Article  PubMed  Google Scholar 

  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721

    Article  PubMed  CAS  Google Scholar 

  • Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4(11):e1000224

    Article  PubMed  Google Scholar 

  • Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ (2009) Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 5(9):e1000507

    Article  PubMed  Google Scholar 

  • Semenov DV, Vratskih OV, Kuligina EV, Richter VA (2008) Splicing by exon exclusion impaired by artificial box c/d RNA targeted to branch-point adenosine. Ann N Y Acad Sci 1137:119–124

    Article  PubMed  CAS  Google Scholar 

  • Shen M, Eyras E, Wu J, Khanna A, Josiah S, Rederstorff M, Zhang MQ, Stamm S (2011) Direct cloning of double-stranded RNAs from RNAse protection analysis reveals processing patterns of C/D box snoRNAs and provides evidence for widespread antisense transcript expression. Nucleic Acids Res. in press

    Google Scholar 

  • Singh SK, Gurha P, Tran EJ, Maxwell ES, Gupta R (2004) Sequential 2′-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. J Biol Chem 279(46):47661–47671

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Steitz JA (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18(12):6897–6909

    PubMed  CAS  Google Scholar 

  • Soeno Y, Taya Y, Stasyk T, Huber LA, Aoba T, Huttenhofer A (2010) Identification of novel ribonucleo-protein complexes from the brain-specific snoRNA MBII-52. RNA 16(7):1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Steitz JA, Tycowski KT (1995) Small RNA chaperones for ribosome biogenesis. Science 270(5242):1626–1627

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15(7):1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Tycowski KT, You ZH, Graham PJ, Steitz JA (1998) Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell 2:629–638

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Dourish CT, Kennett GA (2001) Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 41(2):200–209

    Article  PubMed  CAS  Google Scholar 

  • Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413(6854):432–435

    Article  PubMed  CAS  Google Scholar 

  • Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, Dokal I (2008) Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 105(23):8073–8078

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB, Elmquist JK (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60(4):582–589

    Article  PubMed  CAS  Google Scholar 

  • Yu YT, Shu MD, Steitz JA (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 17(19):5783–5795. doi:10.1093/emboj/17.19.5783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH RO1 GM083187 and the Binational US-Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falaleeva, M., Stamm, S. (2012). Fragments of Small Nucleolar RNAs as a New Source for Noncoding RNAs. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_3

Download citation

Publish with us

Policies and ethics