Skip to main content

Renaissance of the Regulatory RNAs

  • Chapter
  • First Online:
Regulatory RNAs

Abstract

“Non-coding RNAs (ncRNAs)” originate from various types of regulatory DNA, which lie deep in the wilderness of so-called junk DNA present within the genomes. Far from being humble messengers, a group of ncRNAs are powerful players in how genomes operate and are better termed as “regulatory RNAs”. The new regulatory role of RNA began to emerge recently as researchers discovered different classes of regulatory RNA molecules, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs), etc. These versatile RNA molecules appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation, and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in diseases, and constitute an unexplored world of genetic variation both within and between species. In this chapter, we have attempted to provide a snapshot of the entire landscape of these versatile molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221. doi:S0092-8674(05), 00345-4 [pii] 10.1016/j.cell.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  • Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207. doi:nature04916 [pii] 10.1038/nature04916

    PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747. doi:1142612 [pii] 10.1126/science.1142612

    Article  PubMed  CAS  Google Scholar 

  • Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84(8):775–790. doi:S0300908402014025 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132(2):709–717. doi:10.1104/pp. 103.023630132/2/709 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC (2008) PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 31(1):67–78. doi:S1097-2765(08), 00391-2 [pii] 10.1016/j.molcel.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 (7146):799–816. doi:10.1038/nature05874

    Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908. doi:297/17/1901 [pii] 10.1001/jama.297.17.1901

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103. doi:S0092-8674(07), 00257-7 [pii] 10.1016/j.cell.2007.01.043

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553. doi:10.1126/science.10689991068999 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Li X, Hiew S, Brady H, Liu Y, Dou Y (2009) Dicer independent small RNAs associate with telomeric heterochromatin. RNA 15(7):1274–1281. doi:rna.1423309 [pii] 10.1261/rna.1423309

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Hayashizaki Y (2007) Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 17 (2):139-144. doi:S0959-437X(07)00034-2 [pii] 10.1016/j.gde.2007.02.008

    Google Scholar 

  • Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O’Neill MJ, O’Neill RJ (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118(1):113–125. doi:10.1007/s00412-008-0181-5

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. doi:S0092-8674(09)00083-X [pii] 10.1016/j.cell.2009.01.035

    Article  PubMed  CAS  Google Scholar 

  • Chang K, Elledge SJ, Hannon GJ (2006) Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 3(9):707–714. doi:nmeth923 [pii] 10.1038/nmeth923

    Article  PubMed  CAS  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 318(5848):271–274. doi:1147535 [pii] 10.1126/science.1147535

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38(3):367–379. doi:0022-2836(68)90392-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12(1):19–31. doi:nrg2916 [pii] 10.1038/nrg2916

    Article  PubMed  CAS  Google Scholar 

  • Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJ, Matzke M (2009) A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 28(1):48–57. doi:emboj2008260 [pii] 10.1038/emboj.2008 260

    Article  PubMed  CAS  Google Scholar 

  • De Lucia F, Dean C (2011) Long non-coding RNAs and chromatin regulation. Curr Opin Plant Biol 14(2):168–173. doi:S1369-5266(10), 00177-9 [pii] 10.1016/j.pbi.2010.11.006

    Article  PubMed  Google Scholar 

  • Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94(2):83–88. doi:S0888-7543(09), 00106-2 [pii] 10.1016/j.ygeno.2009.05.002

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726. doi:nmeth1079 [pii] 10.1038/nmeth1079

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (2002) Computational genomics of noncoding RNA genes. Cell 109(2):137–140. doi:S0092867402007274 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S (2008a) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899. doi:nature06783 [pii] 10.1038/nature06783

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008b) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162. doi:gkm1113 [pii] 10.1093/nar/gkm1113

    Article  PubMed  CAS  Google Scholar 

  • Fejes-Toth K, Sotirova V, Sachidanandam R, Assaf G, Hannon G, Kapranov P, Foissac S, Willingham A, Duttagupta R, Dumais E, Gingeras T (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457(7232):1028–1032. doi:nature07759 [pii] 10.1038/nature07759

    Article  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    Article  PubMed  CAS  Google Scholar 

  • Galasso M, Elena Sana M, Volinia S (2010) Non-coding RNAs: a key to future personalized molecular therapy? Genome Med 2(2):12. doi:gm133 [pii] 10.1186/gm133

    Article  PubMed  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202. doi:nature04917 [pii] 10.1038/nature04917

    PubMed  Google Scholar 

  • Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18 (3):136-148. doi:S0962-8924(08)00042-1 [pii] 10.1016/j.tcb.2008.01.004

    Google Scholar 

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193–1197. doi:nature07415 [pii] 10.1038/nature07415

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714. doi:gad.1434406 [pii] 10.1101/gad.1434406

    Article  PubMed  CAS  Google Scholar 

  • Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21(4):235–243. doi:2144 [pii]

    Article  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857. doi:0092-8674(83), 90117-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315(5818):1587–1590. doi:1140494 [pii] 10.1126/science.1140494

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952. doi:7953 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82. doi:S0092-8674(07), 00392-3 [pii] 10.1016/j.cell.2007.03.026

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. doi:nrg2936 [pii] 10.1038/nrg2936

    Article  PubMed  CAS  Google Scholar 

  • Huttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20(11):2943–2953. doi:10.1093/emboj/20.11.2943

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32. doi:nrm2321 [pii] 10.1038/nrm2321

    Article  PubMed  CAS  Google Scholar 

  • Kanduri C, Whitehead J, Mohammad F (2009) The long and the short of it: RNA-directed chromatin asymmetry in mammalian X-chromosome inactivation. FEBS Lett 583(5):857–864. doi:S0014-5793(09), 00102-1 [pii] 10.1016/j.febslet.2009.02.004

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi:1138341 [pii] 10.1126/science.1138341

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Ozsolak F, Kim SW, Foissac S, Lipson D, Hart C, Roels S, Borel C, Antonarakis SE, Monaghan AP, John B, Milos PM (2010) New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466(7306):642–646. doi:nature09190 [pii] 10.1038/nature09190

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5(3):e57. doi:1544-9173-5-3-e57 [pii] 10.1371/journal.pbio.0050057

    Article  PubMed  Google Scholar 

  • Khanna A, Stamm S (2010) Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol 7(4):480–485. doi:12746 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157. doi:0092-8674(82), 90414-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. doi:nature04303 [pii] 10.1038/nature04303

    Article  PubMed  Google Scholar 

  • Kurth HM, Mochizuki K (2009) 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 15(4):675–685. doi:rna.1455509 [pii] 10.1261/rna.1455509

    Article  PubMed  CAS  Google Scholar 

  • Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25(18):2298–2301. doi:btp419 [pii] 10.1093/bioinformatics/btp419

    Article  PubMed  CAS  Google Scholar 

  • Lao KQ, Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Tuch B, Bodeau J, Siddiqui A, Surani MA (2009) mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. J Biomol Tech 20(5):266–271

    PubMed  Google Scholar 

  • Lau NC, Ohsumi T, Borowsky M, Kingston RE, Blower MD (2009) Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J 28(19):2945–2958. doi:emboj2009237 [pii] 10.1038/emboj.2009.237

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y (2009) qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459(7244):274–277. doi:nature08041 [pii] 10.1038/nature08041

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Calin GA (2011) Non-coding RNAs and cancer: new paradigms in oncology. Discov Med 11(58):245–254

    PubMed  CAS  Google Scholar 

  • Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363(3):542–546. doi:S0006-291X(07), 01935-3 [pii] 10.1016/j.bbrc.2007.09.007

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2007) piRNAs in the germ line. Science 316(5823):397. doi:316/5823/397 [pii] 10.1126/science.1137543

    Article  PubMed  CAS  Google Scholar 

  • Lunyak VV, Rosenfeld MG (2008) Epigenetic regulation of stem cell fate. Hum Mol Genet 17(R1):R28–R36. doi:ddn149 [pii] 10.1093/hmg/ddn149

    Article  PubMed  CAS  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668. doi:S0092-8674(09), 00127-5 [pii] 10.1016/j.cell.2009.01.045

    Article  PubMed  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. doi:nrg2521 [pii] 10.1038/nrg2521

    Article  PubMed  CAS  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457(7228):413–420. doi:nature07756 [pii] 10.1038/nature07756

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:nmeth.1226 [pii] 10.1038/nmeth.1226

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289. doi:10.1105/tpc.2.4.279 2/4/279 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T, Inagaki S, Siomi H, Siomi MC (2007) Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13(11):1911–1922. doi:rna.744307 [pii] 10.1261/rna.744307

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14(6):1174–1186. doi:rna.1085008 [pii] 10.1261/rna.1085008

    Article  PubMed  CAS  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. doi:S1097-2765(07), 00257-2 [pii] 10.1016/j.molcel.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. doi:S0092-8674(09), 00142-1 [pii] 10.1016/j.cell.2009.02.006

    Article  PubMed  CAS  Google Scholar 

  • Qureshi IA, Mehler MF (2011) Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 17(6):337–346. doi:S1471-4914(11), 00029-3 [pii] 10.1016/j.molmed.2011.02.002

    Article  PubMed  CAS  Google Scholar 

  • Repoila F, Darfeuille F (2009) Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101(2):117–131. doi:BC20070137 [pii] 10.1042/BC20070137

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207. doi:S0092-8674(06), 01468-1 [pii] 10.1016/j.cell.2006.10.040

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20(16):2214–2222. doi:gad.1454806 [pii] 10.1101/gad.1454806

    Article  PubMed  CAS  Google Scholar 

  • Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, Croce CM, Leung SY, Harris CC (2009) Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res 15(18):5878–5887. doi:1078-0432.CCR-09-0627 [pii] 10.1158/1078-0432.CCR-09-0627

    Article  PubMed  CAS  Google Scholar 

  • Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26(5):603–609. doi:S1097-2765(07)00322-X [pii] 10.1016/j.molcel.2007.05.021

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Hendrix D, Levine M, Haley B (2009) A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol 16(2):183–189. doi:nsmb.1536 [pii] 10.1038/nsmb.1536

    Article  PubMed  CAS  Google Scholar 

  • Siomi M, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21(7):754–759

    Article  PubMed  CAS  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296(5571):1260–1263. doi:10.1126/science.1072249 296/5571/1260 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29(3):288–299. doi:10.1002/bies.20544

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS (2009a) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41(5):572–578. doi:ng.312 [pii] 10.1038/ng.312

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009b) Small RNAs derived from snoRNAs. RNA 15(7):1233–1240. doi:rna.1528909 [pii] 10.1261/rna.1528909

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. doi:10.1002/path.2638

    Article  PubMed  CAS  Google Scholar 

  • Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376. doi:10.1146/annurev.cellbio.24.110707.175327

    Article  PubMed  CAS  Google Scholar 

  • Tsuda N, Ishiyama S, Li Y, Ioannides CG, Abbruzzese JL, Chang DZ (2006) Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res 12(21):6557–6564. doi:12/21/6557 [pii] 10.1158/1078-0432.CCR-06-0588

    Article  PubMed  CAS  Google Scholar 

  • Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, Lin H (2009) MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284(10):6507–6519. doi:M809104200 [pii] 10.1074/jbc.M809104200

    Article  PubMed  CAS  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2(4):291–299

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771. doi:20/7/759 [pii] 10.1101/gad.1410506

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16(1):69–79. doi:S1097276504005817 [pii] 10.1016/j.molcel.2004.09.028

    Article  PubMed  CAS  Google Scholar 

  • Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L (2009) Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 53(2–3):245–257. doi:082691av [pii] 10.1387/ijdb.082691av

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Sharma CM (2005) How to find small non-coding RNAs in bacteria. Biol Chem 386(12):1219–1238. doi:10.1515/BC.2005.140

    Article  PubMed  CAS  Google Scholar 

  • Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23(11):1383–1390. doi:nbt1144 [pii] 10.1038/nbt1144

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15(13):1637–1651. doi:10.1101/gad.901001

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743. doi:gad.1425706 [pii] 10.1101/gad.1425706

    Article  PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628. doi:S0092-8674(09), 00125-1 [pii] 10.1016/j.cell.2009.01.043

    Article  PubMed  CAS  Google Scholar 

  • Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13(6):496–502. doi:3302654 [pii] 10.1038/sj.gt.3302654

    Article  PubMed  CAS  Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573. doi:309/5740/1570 [pii] 10.1126/science.1115901

    Article  PubMed  CAS  Google Scholar 

  • Woese C (1967) The evolution of the genetic code. In: The genetic code. Harper and Row, New York, pp. 179–195

    Google Scholar 

  • Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279(17):17181–17189. doi:10.1074/jbc.M311683200 M311683200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450(7167):304–308. doi:nature06263 [pii] 10.1038/nature06263

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175. doi:gad.1352605 [pii] 10.1101/gad.1352605

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148. doi:7600491 [pii] 10.1038/sj.emboj.7600491

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16. doi:S0012-1606(05), 00764-5 [pii] 10.1016/j.ydbio.2005.10.036

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhumur Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghosh, Z., Mallick, B. (2012). Renaissance of the Regulatory RNAs. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_1

Download citation

Publish with us

Policies and ethics