Skip to main content

Nanotechnology Based Optical Solution for NP-Hard Problems

(Extended Abstract)

  • Conference paper
Optical Supercomputing (OSC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6748))

Included in the following conference series:

  • 637 Accesses

Abstract

We present a design for a micro optical architecture for solving instances of NP-hard problems, using nano-technology. The architecture is using pre-processed masks to block some of the light propagating through them. We demonstrate how such a device could be used to solve instances of Hamiltonian-cycle and the Permanent problems.

Partially supported by Deutsche Telekom, the ICT Programme of the European Union under contract number FP7-215270 (FRONTS), Rita Altura Trust Chair in Computer Sciences, and the Lynne and William Frankel Center for Computer Sciences. Emails: {dolev,eyalco}@cs.bgu.ac.il, rmichael@bgu.ac.il, fsergei@mail.ru, puzis@bgu.ac.il. An extended version appears as TR of the Dept. of Computer Science, BGU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anter, A., Dolev, S.: Optical solution for hard on average #P-complete instances. Natural Computing (2010)

    Google Scholar 

  2. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. of the 3rd Ann. ACM Symp. On Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  3. Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete problems, trading space for time. Theoretical Comp. Science 411, 837 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dolev, S., Fitoussi, H.: Primitive Operations for Graph-Optical Processor. In: 6th Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms (May 2006)

    Google Scholar 

  5. Dolev, S., Fitoussi, H.: The Traveling Beams: Optical Solutions for Bounded NP-Complete Problems, Technical report #07-04, Ben Gurion University of the Negev (January 2007)

    Google Scholar 

  6. Dolev, S., Korach, E., Uzan, G.: A Method for Encryption and Decryption of Messages, PCT Patent Application WO 2006/001006 (January 2006)

    Google Scholar 

  7. Dolev, S., Yuval, N.: Optical implementation of bounded non-deterministic Turing machines, US Patent 7,130,093 B2, January 2005, Filed (May 2004)

    Google Scholar 

  8. Feitelson, G.: Optical Computing: A Survey for Computer Scientists. MIT Press, Cambridge (1988)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability, a guide to the theory of NP completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  10. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If NP Languages are Hard on the Worst-Case, then it is easy to find their Hard Instances. Journal of Computational Complexity (2007)

    Google Scholar 

  11. Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Problem. Opt. Express 15, 10473–10482 (2007)

    Article  Google Scholar 

  12. Hopcroft, J.E., Karp, R.M.: An algorithm for maximum matching in bipartite graphs. SIAM J. Computing 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hyman, A.: Charles Babbage: Pioneer of the Computer. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  14. Karp, R.M.: Reducibilty among combinatorial problems. Complexity of Computer Computations, 85–103 (1972)

    Google Scholar 

  15. Lenslet LTD, http://www.hpcwire.com/hpcwire/hpcwireWWW/03/1017/106185.html

  16. Mann, H.J., Ulrich, W., Seitz, G.: 8-Mirror microlithography projection objective, US Patent 2004/0012866 A1, January 2004, Filed (April 2003)

    Google Scholar 

  17. McAulay, A.D.: Optical computer architectures. John Wiley, Chichester (1991)

    Google Scholar 

  18. Oltean, M.: A Light-Based Device for Solving the Hamiltonian Path Problem. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 217–227. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. In: Natural Computing, Springer, Heidelberg (2007)

    Google Scholar 

  20. Shaked, N.T., Messika, S., Dolev, S., Rosen, J.: Optical solution for Bounded NP-Complete Problems. Journal of App. Optics 46, 711 (2007)

    Article  Google Scholar 

  21. Reif, J.H., Tygar, D., Yoshida, A.: The Computability and Complexity of Optical Beam Tracing. In: 31st Annual IEEE Symposium on Foundations of Computer Science, pp. 106–114 (1990); Also The Computability and Complexity of Ray Tracing. Discrete and Computational Geometry 11, 265-287 (1994)

    Google Scholar 

  22. Tamir, D.E., Shaked, N.T., Wilson, P.J., Dolev, S.: Electro-Optical DSP of Tera Operations per Second and Beyond (Extended Abstract). In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 56–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. van Emde Boas, P.: Machine Models and Simulation. In: Volume, A. (ed.) Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A) pp. 1–66 (1990)

    Google Scholar 

  24. Woods, D.: Optical Computing and Computational Complexity. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 27–40. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Woods, D., Gibson, J.P.: Lower Bounds on the Computational Power of an Optical Model of Computation. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 237–250. Springer, Heidelberg (2005); Journal version, Natural Computing 79(1), 95–108 (2008)

    Chapter  Google Scholar 

  26. Xiajun, W., Zhao, X., Bermak, A., Boussaind, F.: An AER based CMOS Polarization Image Sensor with Photo-aligned Micropolarizer Array. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 95–108. Springer, Heidelberg (2005); Journal version. Natural Computing  7(1), 95–108 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, E., Dolev, S., Frenkel, S., Puzis, R., Rosenblit, M. (2011). Nanotechnology Based Optical Solution for NP-Hard Problems. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2010. Lecture Notes in Computer Science, vol 6748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22494-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22494-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22493-5

  • Online ISBN: 978-3-642-22494-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics