Skip to main content

Prediction of Protein-Protein Interactions Using Local Description of Amino Acid Sequence

  • Conference paper
Advances in Computer Science and Education Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 202))

Abstract

Protein-protein interactions (PPIs) are essential to most biological processes. Although high-throughput technologies have generated a large amount of PPI data for a variety of organisms, the interactome is still far from complete. So many computational methods based on machine learning have already been widely used in the prediction of PPIs. However, a major drawback of most existing methods is that they need the prior information of the protein pairs such as protein homology information. In this paper, we present an approach for PPI prediction using only the information of protein sequence. This approach is developed by combing a novel representation of local protein sequence descriptors and support vector machine (SVM). Local descriptors account for the interactions between sequentially distant but spatially close amino acid residues, so this method can adequately capture multiple overlapping continuous and discontinuous binding patterns within a protein sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhao, X., Wang, R., Chen, L.: Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Research (36), 48 (2008)

    Article  Google Scholar 

  2. Zhao, X., Wang, R., Chen, L., et al.: Gene function prediction using labelled and unlabeled data. BMC Bioinformatics 957 (2008)

    Google Scholar 

  3. Zhao, X., Wang, R., Chen, L., et al.: Protein function prediction with high-throughput data. Amino Acids 35, 517–530 (2008)

    Article  Google Scholar 

  4. Ito, T., Chiba, T., Ozawa, R., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  5. Ho, Y., Gruhler, A., Heilbut, A., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  6. Zhu, H., Bilgin, M., Bangham, R., Hall, D., et al.: Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001)

    Article  Google Scholar 

  7. Skrabanek, L., Saini, H., Bader, G., Enright, A.: Computational prediction of protein–protein interactions. Molecular Biotechnology 38, 1–17 (2008)

    Article  Google Scholar 

  8. Shen, J., Zhang, J., Luo, X., et al.: Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. USA 104, 4337–4341 (2007)

    Article  Google Scholar 

  9. Guo, Y., Yu, L., Wen, Z., Li, M.: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res. 36, 3025–3030 (2008)

    Article  Google Scholar 

  10. Bock, J.R., Gough, D.A.: Whole-proteome interaction mining. Bioinformatics 19, 125–134 (2003)

    Article  Google Scholar 

  11. Martin, S., Roe, D., Faulon, J.L.: Predicting protein-protein interactions using signature products. Bioinformatics 21, 218–226 (2005)

    Article  Google Scholar 

  12. Nanni, L.: Fusion of classifiers for predicting protein-protein interactions. Neurocomputing 68, 289–296 (2005)

    Article  Google Scholar 

  13. Nanni, L.: Hyperplanes for predicting protein-protein interactions. Neurocomputing 69, 257–263 (2005)

    Article  Google Scholar 

  14. Nanni, L., Lumini, A.: An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics 22, 1207–1210 (2006)

    Article  Google Scholar 

  15. Shi, M., Xia, J., Li, X., Huang, D.: Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Amino Acids (2009), doi:10.1007/s00726-009-0295-y

    Google Scholar 

  16. Xia, J., Liu, K.H., Huang, D.: Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein and Peptide Letters (2009) (in press)

    Google Scholar 

  17. Tong, J., Tammi, M.: Prediction of protein allergenicity using local description of amino acid sequence. Frontiers in Bioscience: A Journal and Virtual Library 13, 6072 (2008)

    Article  Google Scholar 

  18. Davies, M., Secker, A., Freitas, A., Clark, E.: Optimizing amino acid groupings for GPCR classification. Bioinformatics 24, 1980–1986 (2008)

    Article  Google Scholar 

  19. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: The Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  20. Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)

    Article  Google Scholar 

  21. Zweig, M., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993)

    Google Scholar 

  22. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Y.Z., Gao, Y., Zheng, Y.Y. (2011). Prediction of Protein-Protein Interactions Using Local Description of Amino Acid Sequence. In: Zhou, M., Tan, H. (eds) Advances in Computer Science and Education Applications. Communications in Computer and Information Science, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22456-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22456-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22455-3

  • Online ISBN: 978-3-642-22456-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics