The Matita Interactive Theorem Prover

  • Andrea Asperti
  • Wilmer Ricciotti
  • Claudio Sacerdoti Coen
  • Enrico Tassi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)


Matita is an interactive theorem prover being developed by the Helm team at the University of Bologna. Its stable version 0.5.x may be downloaded at . The tool originated in the European project MoWGLI as a set of XML-based tools aimed to provide a mathematician-friendly web-interface to repositories of formal mathematical knoweldge, supporting advanced content-based functionalities for querying, searching and browsing the library. It has since then evolved into a fully fledged ITP, specifically designed as a light-weight, but competitive system, particularly suited for the assessment of innovative ideas, both at foundational and logical level. In this paper, we give an account of the whole system, its peculiarities and its main applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Armentano, C.: A page in number theory. Journal of Formalized Reasoning 1, 1–23 (2008)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Asperti, A., Guidi, F., Coen, C.S., Tassi, E., Zacchiroli, S.: A content based mathematical search engine: Whelp. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 17–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Asperti, A., Ricciotti, W.: About the formalization of some results by chebyshev in number theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 19–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: Hints in unification. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 84–98. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: User interaction with the Matita proof assistant. J. Autom. Reasoning 39(2), 109–139 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Asperti, A., Tassi, E.: An interactive driver for goal directed proof strategies. In: Proc. of UITP 2008. ENTCS, vol. 226, pp. 89–105 (2009)Google Scholar
  7. 7.
    Asperti, A., Tassi, E.: Smart matching. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 263–277. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Asperti, A., Tassi, E.: Superposition as a logical glue. In: Proc. of TYPES 2009, EPTCS (2010) (to appear) Google Scholar
  9. 9.
    Aspinall, D.: Proof general: A generic tool for proof development. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, p. 38. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Babu, C. S., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The POPLmark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Bertot, Y.: The CtCoq system: Design and architecture. Formal Aspects of Computing 11, 225–243 (1999)CrossRefGoogle Scholar
  12. 12.
    The CerCo website,
  13. 13.
    Coen, C.S.: Declarative representation of proof terms. J. Autom. Reasoning 44(1-2), 25–52 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Technical Report NASA/CP-2003-212448, Nasa technical reports (2003)Google Scholar
  15. 15.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Luo, Z.: Coercive subtyping. J. Logic and Computation 9(1), 105–130 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    McCune, W., Wos, L.: Otter - the CADE-13 competition incarnations. J. of Autom. Reasoning 18(2), 211–220 (1997)CrossRefGoogle Scholar
  18. 18.
    Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First prototype. Inf. Comput. 204(10), 1575–1596 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    The Mizar proof-assistant,
  20. 20.
    Coen, C.S., Tassi, E.: A constructive and formal proof of Lebesgue’s dominated convergence theorem in the interactive theorem prover Matita. Journal of Formalized Reasoning 1, 51–89 (2008)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Sacerdoti Coen, C., Tassi, E.: Working with mathematical structures in type theory. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 157–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Coen, C.S., Tassi, E., Zacchiroli, S.: Tinycals: step by step tacticals. In: Proc. of UITP 2006. ENTCS, vol. 174, pp. 125–142. Elsevier Science, Amsterdam (2006)Google Scholar
  23. 23.
    Coen, C.S., Zacchiroli, S.: Efficient ambiguous parsing of mathematical formulae. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 347–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Sozeau, M.: Subset coercions in coq. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Sutcliffe, G.: The CADE-22 automated theorem proving system competition - CASC-22. AI Commun. 23, 47–59 (2010)zbMATHMathSciNetGoogle Scholar
  27. 27.
    The Coq Development Team. The Coq proof assistant reference manual,
  28. 28.
    Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    Wenzel, M.T.: Isar - A generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrea Asperti
    • 1
  • Wilmer Ricciotti
    • 1
  • Claudio Sacerdoti Coen
    • 1
  • Enrico Tassi
    • 2
  1. 1.Department of Computer ScienceUniversity of BolognaBolognaItaly
  2. 2.Microsoft ResearchINRIA Joint CentreFrance

Personalised recommendations