Skip to main content

Sine Qua Non for Large Theory Reasoning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6803))

Abstract

One possible way to deal with large theories is to have a good selection method for relevant axioms. This is confirmed by the fact that the largest available first-order knowledge base (the Open CYC) contains over 3 million axioms, while answering queries to it usually requires not more than a few dozen axioms. A method for axiom selection has been proposed by the first author in the Sumo INference Engine (SInE) system. SInE has won the large theory division of CASC in 2008. The method turned out to be so successful that the next two years it was used by the winner as well as by several other competing systems. This paper contains the presentation of the method and describes experiments with it in the theorem prover Vampire.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roederer, A., Puzis, Y., Sutcliffe, G.: divvy: An ATP meta-system based on axiom relevance ordering. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 157–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195. Springer, Heidelberg (2008)

    Google Scholar 

  3. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  5. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS, pp. 2–9 (2001)

    Google Scholar 

  7. Plaisted, D.A., Yahya, A.H.: A relevance restriction strategy for automated deduction. Artif. Intell. 144(1-2), 59–93 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pudlak, P.: Semantic selection of premisses for automated theorem proving. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) ESARLT. CEUR Workshop Proceedings, vol. 257, pp. 27–44. (2007) CEUR-WS.org

    Google Scholar 

  9. Rudnicki, P. (ed.): An overview of the mizar project, pp. 311–332. University of Technology, Bastad (1992)

    Google Scholar 

  10. Sutcliffe, G.: CASC-J4 the 4th IJCAR ATP system competition. In: Armando (ed.) [2], pp. 457–458

    Google Scholar 

  11. Sutcliffe, G.: The tptp problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  12. Sutcliffe, G.: The cade-22 automated theorem proving system competition - casc-22. AI Commun. 23(1), 47–59 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Sutcliffe, G., Puzis, Y.: Srass - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Urban, J.: Mptp 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning 37(1-2), 21–43 (2006)

    Article  MATH  Google Scholar 

  15. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the mizar mathematical library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: Malarea sg1- machine learner for automated reasoning with semantic guidance. In: Armando (ed.) [2], pp. 441–456.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoder, K., Voronkov, A. (2011). Sine Qua Non for Large Theory Reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds) Automated Deduction – CADE-23. CADE 2011. Lecture Notes in Computer Science(), vol 6803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22438-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22438-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22437-9

  • Online ISBN: 978-3-642-22438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics