Modal Analysis – Measurements versus FEM and Artificial Neural Networks Simulation

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 188)


The article deals with the experimental modal analysis of glass laminates plates with different shape and these results are compared with those obtained by applications of the artificial neural networks (ANN) and finite element method (FEM) simulation. We have investigated the dependence of the generated mode frequency as a function of sample thickness as well as the sample shape (rounding) of glass laminate samples. The coincidence of both experimental and simulated results is very good.


Artificial neural network Glass laminates plate Finite elements methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babic, B.: Modal analyze in dynamic of building constructions (in Slovak) ISBN 978-80-969595-1-8Google Scholar
  2. 2.
    Ma, C.C., Lin, C.C.: Experimental Investigation of Vibrating Laminated Composite Plates by Optical Interferometry Method. AIAA J. 39(3), 491–497 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lin, D.X., Ni, R.G., Adams, R.D.: Prediction and Measurement of the vibration Damping Parameters of Carbon and Glass Fiber-Reinforced Plastics Plates. J. Compos. Mater 18, 132–152 (1984)CrossRefGoogle Scholar
  4. 4.
    Mujeeb, A., Nayar, V.U., Ravindran, V.R.: Electronic Speckle Pattern Interferometry techniques for non- destructive evaluation: a review. Insight - Non-Destructive Testing and Condition Monitoring 48(5) (2006)Google Scholar
  5. 5.
    Cordero, R.R., Martinez, A., Rayas, J.A., Labbe, F.: Necking progression in tensile specimens monitored in real-time by using fringe projection. Optics and Lasers in Engineering 48(12), 1285–1290 (2010)CrossRefGoogle Scholar
  6. 6.
    Haggerty, M., Qing Lin, Ć., Labuť, J.F.: Observing Deformation and Fracture of Rock with Speckle Patterns. Rock Mech. Rock Eng. 43, 417–426 (2010)CrossRefGoogle Scholar
  7. 7.
    Badeshia, H.K.D.H.: Neural Networks in Material Science. ISIJ International 39(10), 966–979 (1999)CrossRefGoogle Scholar
  8. 8.
    Jančíková, Z.: Artificial Neural Networks in Material Engineering, p. 81. GEP ARTS, Ostrava (2006)Google Scholar
  9. 9.
    Švec, P., Jančíková, Z., Melecký, J., Koštial, P.: Implementation of Neural Networks for Prediction of Chemical Composition of Refining Slag. In: International Conference on Metallurgy and Materials, Rožnov, pp. 155–159 (2010) ISBN 978-80-87294-17-8Google Scholar
  10. 10.
    Jančíková, Z., David, J., Vrožina, M.: Aplikace neuronových sítí v materiálovém inženýrství. Hutnické listy LXI(1), 88–94 (2008) ISSN 0018-8069Google Scholar
  11. 11.
    Rusnáková, S., Kopál, I., Koštial, P.: The applications of waveprocess for the study of glass fibre reinforced laminates. Current topics in acoustical research 4 (2006) ISSN 0972-4818Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of Metallurgy and Materials EngineeringVŠB - Technical University of OstravaOstrava - PorubaCzech Republic
  2. 2.Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations