Skip to main content

Automatic Classification of Sleep/Wake Stages Using Two-Step System

  • Conference paper
Digital Information Processing and Communications (ICDIPC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 188))

Abstract

This paper presents application of an automatic classification system on 53 animal polysomnographic recordings. A two-step automatic system is used to score the recordings into three traditional stages: wake, NREM sleep and REM sleep. In the first step of the analysis, monitored signals are analyzed using artifact identification strategy and artifact-free signals are selected. Then, 30sec epochs are classified according to relevant features extracted from available signals using artificial neural networks. The overall classification accuracy reached by the presented classification system exceeded 95%, when analyzed 53 polysomnographic recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Robert, C., Guilpin, C., Limoge, A.: Review of neural network applications in sleep research. Journal of Neuroscience Methods 79, 187–193 (1998)

    Article  Google Scholar 

  2. Schaltenbrand, N., Lengelle, R., Macher, J.P.: Neural network model: application to automatic analysis of human sleep. Computers and Biomedical Research 26, 157–171 (1993)

    Article  Google Scholar 

  3. Robert, C., Karasinski, P., Natowicz, R., Limoge, A.: Adult rat vigilance state discrimination by artificial neural network using a single EEG channel. Physiol and Behav. 59(6), 1051–1060 (1996)

    Article  Google Scholar 

  4. Becq, G., Charbonnier, S., Chapotot, F., Buguet, A., Bourdon, L., Baconnier, P.: Comparison between five classifiers for automatic scoring of human sleep recordings. In: Halgamuge, S.K., Wang, L. (eds.) Studies in Computational Intelligence (SCI). Classification and clustering for knowledge discovery, vol. 4, pp. 113–127. Springer, Heidelberg (2005)

    Google Scholar 

  5. Zoubek, L., Carbonnier, S., Lesecq, S., Buguet, A., Chapotot, F.: A Two-steps Sleep/wake Stages Classifier Taking into Account Artefacts in The Polysomnographic Signals. In: Proceedings of the 17th IFAC World Congress (2008) ISBN 978-3-902661-00-5

    Google Scholar 

  6. Brunner, D., Vasko, R., Detka, C., Monahan, J., Reynolds, C., Kupfer, D.: Muscle artifacts in the sleep EEG: Automated detection and effect on all-night EEG power spectra. Journal of Sleep Research 5, 155–164 (1996)

    Article  Google Scholar 

  7. Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., Chapotot, F.: Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control 2(3), 171–179 (2007)

    Article  Google Scholar 

  8. Rampil, I.J., Sasse, F.J., Smith, N.T., Hoff, B.H., Fleming, D.C.: Spectral edge frequency-a new correlate of anesthetic depth. Anesthesiology 53, 512–517 (1980)

    Article  Google Scholar 

  9. Moddemeijer, R.: On Estimation of Entropy and Mutual Information of Continuous Distributions. Signal Processing 16, 233–246 (1989)

    Article  MathSciNet  Google Scholar 

  10. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology 29, 306–310 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zoubek, L., Chapotot, F. (2011). Automatic Classification of Sleep/Wake Stages Using Two-Step System. In: Snasel, V., Platos, J., El-Qawasmeh, E. (eds) Digital Information Processing and Communications. ICDIPC 2011. Communications in Computer and Information Science, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22389-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22389-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22388-4

  • Online ISBN: 978-3-642-22389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics