Skip to main content

Subcellular and Sub-organellar Proteomics as a Complementary Tool to Study the Evolution of the Plastid Proteome

  • Chapter
  • First Online:
Organelle Genetics

Abstract

Plastids fulfill a number of essential functions, including photosynthesis, assimilation of nitrogen and sulfur, synthesis of amino acids, fatty acids, and many secondary metabolites. Pure computation-based predictions are limited in predicting plastid proteomes, and proteomic and especially subcellular proteomics studies are essential to provide an in-depth evaluation of the plastid proteome. The aim of this chapter was to highlight some of the current data, generated by plastids proteomics, in terms of functions, compartmentation, and evolution of this organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    Article  PubMed  CAS  Google Scholar 

  • Andon N-L, Hollingworth S, Koller A, Greenland AJ, Yates J-R 3rd, Haynes P-A (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2:1156–1168

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19(2):R81–R88

    Article  PubMed  CAS  Google Scholar 

  • Armbruster U, Hertle A, Makarenko E, Zühlke J, Pribil M, Dietzmann A, Schliebner I, Aseeva E, Fenino E, Scharfenberg M, Voigt C, Leister D (2009) Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? Mol Plant 2:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26:1533–1148

    Article  PubMed  CAS  Google Scholar 

  • Austin JR II, Frost E, Vidi P-A, Kessler F, Staehelina LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzyme. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S, Gruissen W (2004) Chloroplast proteomics: potentials and challenges. J Exp Bot 55:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S, Siddique A, Gruissem W (2004) Proteome analysis of tobacco bright yellow-2 (BY-2) cell culture plastids as a model for undifferentiated heterotrophic plastids. J Proteome Res 3:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech J-C (2010) Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot 61:2413–2431

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Douce R, Joyard J, Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam A, Hofmann-Benning S, Weber AP (2008a) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol 148:568–579

    Article  PubMed  Google Scholar 

  • Bräutigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE, Weber AP (2008b) Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J Biotechnol 136:44–53

    Article  PubMed  Google Scholar 

  • Bräutigam A, Weber AP (2009) Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes. Mol Plant 2:1247–1261

    Article  PubMed  Google Scholar 

  • Brehelin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897

    Article  PubMed  CAS  Google Scholar 

  • Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128–1134

    Article  PubMed  CAS  Google Scholar 

  • Dupont FM (2008) Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol 8:39

    Article  PubMed  Google Scholar 

  • Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech J-C (2010) Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601–1611

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on the N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, von Heijne G (2001) Prediction of organellar targeting signals. Biochim Biophys Acta 1541:114–119

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N (2010) AT_CHLORO: a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J, Joyard J (2000) Organic solvent extraction to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21:3517–3526

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Tardif M, Reguer E, Cahuzac R, Bruley C, Vermat T, Nugues E, Vigouroux M, Vandenbrouck Y, Garin J, Viari A (2008) PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. J Proteome Res 7:1873–1883

    Article  PubMed  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425

    Article  PubMed  Google Scholar 

  • Gomez SM, Nishio JN, Faull KF, Whitelegge JP (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol Cell Proteomics 1:46–59

    Article  PubMed  CAS  Google Scholar 

  • Gomez SM, Bil KY, Aguilera R, Nishio JN, Faull KF, Whitelegge JP (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol Cell Proteomics 2:1068–1085

    Article  PubMed  CAS  Google Scholar 

  • Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Ito-Inaba Y (2010) Versatile roles of plastids in plant growth and development. Plant Cell Physiol 51:1847–1853

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Katavic V, Agrawal GK, Guzov VM, Thelen JJ (2008) Purification and proteomic characterization of plastids from Brassica napus developing embryos. Proteomics 8:3397–3405

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285

    Article  PubMed  CAS  Google Scholar 

  • Joshi H, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, Schmidt R, Shulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AME, Briggs SP, Castleden I, Tanz SK, Millar AH, Heazlewood JL (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155:259–270

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Marechal E, Block MA, Dorne AJ, Rolland N, Ajlani G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Subplastidial compartmentation of lipid biosynthetic pathways. Prog Lipid Res 49:128–158

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91(10):1481–1493

    Article  PubMed  Google Scholar 

  • Kanervo E, Singh M, Suorsa M, Paakkarinen V, Aro E, Battchikova N, Aro E-M (2008) Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum). Plant Cell Physiol 49:396–410

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Hagman AB, Schröder WP (1998) The thylakoid lumen of chloroplasts. Isolation and characterization. J Biol Chem 273:6710–6716

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Bystedt M, Hynds P, Robinson C, Schröder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Schröder WP (2003) The proteome of the chloroplast lumen of higher plants. Photosynth Res 78:249–264

    Article  PubMed  CAS  Google Scholar 

  • Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, Nakano A, Mitsui T (2009) The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844–2858

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47:432–436

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S (2007) Proteome dynamics during plastid differentiation in rice. Plant Physiol 143:912–923

    Article  PubMed  CAS  Google Scholar 

  • Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Plastids and protein targeting. J Eukaryot Microbiol 46(4):339–346

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–4031

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Zybailov B, Ytterberg J, Dunsmore J, Sun Q, van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 7:1609–1638

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99(24):12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Minge A, Shalchian-Tabrizi K, Tørresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the greencolored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 10:191

    Article  PubMed  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277:47770–47778

    Article  PubMed  CAS  Google Scholar 

  • Miras M, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) TOC159- and TOC75-independent import of a transit sequence less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492

    Article  PubMed  CAS  Google Scholar 

  • Nada A, Soll J (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117:3975–3982

    Article  PubMed  CAS  Google Scholar 

  • Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, Muñoz FJ, Rodríguez-López M, Baroja-Fernández E, Pozueta-Romero J (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–2592

    Article  PubMed  CAS  Google Scholar 

  • Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7:3964–3979

    Article  PubMed  CAS  Google Scholar 

  • Nosenko T, Lidie KL, Van Dolah FM, Lindquist E, Cheng JF, US Department of Energy-Joint Genome Institute, Bhattacharya D (2010) Chimeric plastid proteome in the Florida “Red Tide” dinoflagellate Karenia brevis. Mol Biol Evol 23:2026–2038

    Article  Google Scholar 

  • Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5:114–133

    PubMed  CAS  Google Scholar 

  • Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 16:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J (2003) Proteomics of chloroplast envelope membranes. Photosynth Res 78:205–230

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Curr Opin Microbiol 12:285–291

    Article  PubMed  CAS  Google Scholar 

  • Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Sadowski PG, Groen AJ, Paul Dupree P, Lilley KS (2008) Sub-cellular localization of membrane proteins. Proteomics 8:3991–4011

    Article  PubMed  CAS  Google Scholar 

  • Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T, Soll J (2003) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12:748–759

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Garin J, Joyard J (1999) Technical advance: differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19:217–228

    Article  PubMed  CAS  Google Scholar 

  • Siddique MA, Grossmann J, Gruissem W, Baginsky S (2006) Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. Plant Cell Physiol 47:1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Emanuelsson O, van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135:723–734

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Miyagishima SY (2010) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV (2006) Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 5:1412–1425

    Article  PubMed  CAS  Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    Article  PubMed  Google Scholar 

  • Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  PubMed  CAS  Google Scholar 

  • Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  Google Scholar 

  • von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjolander K, Baginsky S, Gruissem W (2005) Proteome analysis of the rice etioplast – metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4:1072–1084

    Article  Google Scholar 

  • Weber AP, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164

    Article  PubMed  Google Scholar 

  • Whitelegge JP, Gundersen CB, Faull KF (1998) Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci 7:1423–1430

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Rinalducci S, Timperio AM, Huber CG (2002) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I. Plant Physiol 130:1938–1950

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Rinalducci S, Timperio AM (2007) Proteomic analysis of photosystem I components from different plant species. Proteomics 7:1866–1876

    Article  PubMed  CAS  Google Scholar 

  • Zolla L, Timperio AM, Walcher W, Huber CG (2003) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem II. Plant Physiol 131:198–214

    Article  PubMed  CAS  Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3(4):e1994

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuntz, M., Rolland, N. (2012). Subcellular and Sub-organellar Proteomics as a Complementary Tool to Study the Evolution of the Plastid Proteome. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_9

Download citation

Publish with us

Policies and ethics