Skip to main content

Mitochondria, Hydrogenosomes and Mitosomes in Relation to the CoRR Hypothesis for Genome Function and Evolution

  • Chapter
  • First Online:
Organelle Genetics

Abstract

Why do just a few genes remain within mitochondria and chloroplasts as vestiges of ancestral, bacterial genomes? One proposal is that mitochondrial and chloroplast genes must remain in the same cellular compartment as their gene products in order for their expression to be subject to redox regulatory control – the CoRR hypothesis for the function of cytoplasmic genomes. Predictions of the CoRR hypothesis have been examined experimentally for chloroplasts, where results are consistent with theory. For mitochondria, the same logic applies, because the CoRR hypothesis applies equally to both types of bioenergetic organelle. However, experimental evidence from mitochondria currently lags behind that available from investigations of chloroplasts. Nevertheless, mitochondria perhaps provide a better-characterised diversity of form and function than chloroplasts, with hydrogenosomes and mitosomes as examples of relict mitochondria. In these cases, loss of oxidative phosphorylation has clearly been accompanied by loss of the localised genetic system, which underpins it. This pattern is unexplained by considerations of hydrophobicity of gene products. Relict mitochondria can, instead, be understood in terms of CoRR – genes in bioenergetic organelles are retained in order to be subject to regulatory control by the redox state of their corresponding gene products.

“Please note the Erratum to the authors’ addresses at the end of the book”

An erratum to this chapter is available at 10.1007/978-3-642-22380-8_18

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-22380-8_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1993a) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1993b) Redox control of transcription – sensors, response regulators, activators and repressors. FEBS Lett 332:203–207

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003a) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358:19–37

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003b) Why chloroplasts and mitochondria contain genomes. Comp Funct Genomics 4:31–36

    Article  PubMed  Google Scholar 

  • Allen CA, Hakansson G, Allen JF (1995a) Redox conditions specify the proteins synthesized by isolated chloroplasts and mitochondria. Redox Rep 1:119–123

    CAS  Google Scholar 

  • Allen JF, Alexciev K, Hakansson G (1995b) Photosynthesis. Regulation by redox signalling. Curr Biol 5:869–872

    Article  PubMed  CAS  Google Scholar 

  • Allen CA, van der Giezen M, Allen JF (2007) Origin, function, and transmission of mitochondria. In: Martin W, Müller M (eds) Origins of mitochondria and hydrogenosomes. Springer, Berlin, pp 39–56

    Chapter  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26:1533–1548

    Article  PubMed  CAS  Google Scholar 

  • Azevedo J, Courtois F, Hakimi MA, Demarsy E, Lagrange T, Alcaraz JP, Jaiswal P, Marechal-Drouard L, Lerbs-Mache S (2008) Intraplastidial trafficking of a phage-type RNA polymerase is mediated by a thylakoid RING-H2 protein. Proc Natl Acad Sci USA 105:9123–9128

    Article  PubMed  CAS  Google Scholar 

  • Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira de Mattos J, Hellingwerf K (2010) The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 192:746–754

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Bradley PJ, Lahti CJ, Plümper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757

    Article  PubMed  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Franz Lang B (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1983) A 6 kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. De Gruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Cerkasovová A, Lukasová G, Cerkasòv J, Kulda J (1973) Biochemical characterization of large granule fraction of Tritrichomonas foetus (strain KV1). J Protozool 20:525

    Google Scholar 

  • Cerkasovová A, Cerkasòv J, Kulda J, Reischig J (1976) Circular DNA and cardiolipin in hydrogenosomes, microbody-like organelles in Trichomonas. Folia Parasitol 23:33–37

    PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria – central role of complex III. J Biol Chem 278:36027–36031

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noel CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillen N, Duchene M, Nozaki T, Hall N (2007) Structure and content of the Entamoeba histolytica genome. Adv Parasitol 65:51–190

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Perea J, Shu Y, Samatey FA, Popot JL, Jacq C (1995) Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228:762–771

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Clifton R, Whelan J (2002) Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci USA 99:10510–10515

    Article  PubMed  CAS  Google Scholar 

  • de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JW, van der Staay GW, Tielens AG, Huynen MA, Hackstein JH (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol. doi:10.1093/molbev/msr1059

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8:624–629

    Article  PubMed  CAS  Google Scholar 

  • Escobar Galvis ML, Allen JF, Hakansson G (1998) Protein synthesis by isolated pea mitochondria is dependent on the activity of respiratory complex II. Curr Genet 33:320–329

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Martin W, Dagan T (2007) The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 3:180–184

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Henze K, Martin W (2003) Essence of mitochondria. Nature 426:127–128

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Kilvington S, Lloyd D, Embley TM (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc R Soc Lond B Biol Sci 263:1053–1059

    Article  CAS  Google Scholar 

  • Ibrahim IM (2009) Characterizing chloroplast sensor kinase. Biosci Horizons 2:191–196

    Article  CAS  Google Scholar 

  • Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov YM, Tarasenko VI, Rogozin IB (2001) Redox modulation of the activity of DNA topoisomerase I from carrot (Daucus carota) mitochondria. Dokl Biochem Biophys 377:263–265

    Article  CAS  Google Scholar 

  • Kuhn K, Richter U, Meyer EH, Delannoy E, de Longevialle AF, O’Toole N, Borner T, Millar AH, Small ID, Whelan J (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21:2762–2779

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820

    Article  PubMed  CAS  Google Scholar 

  • Lahti CJ, D’Oliveira CE, Johnson PJ (1992) β-Succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830

    PubMed  CAS  Google Scholar 

  • Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the α-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66:309–318

    Article  PubMed  CAS  Google Scholar 

  • Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford Press, Oxford

    Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • León-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology 150:1245–1250

    Article  PubMed  Google Scholar 

  • Lill R, Mühlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  PubMed  CAS  Google Scholar 

  • Luck DJL, Reich E (1964) DNA in mitochondria of Neurospora crassa. Proc Natl Acad Sci USA 52:931–938

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT (2002) Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502

    Article  PubMed  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, USA

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman, New York

    Google Scholar 

  • Martin W (2007) Eukaryote and mitochondrial origins: two sides of the same coin and too much ado about oxygen. In: Falkowski P, Knoll A (eds) Primary producers of the sea. Academic Press, New York, pp 55–73

    Chapter  Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated english translation of Mereschkowsky’s 1905 paper ‘Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche’. Eur J Phycol 34:287–295

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling – specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Nass MM, Nass S (1963) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  PubMed  CAS  Google Scholar 

  • Omori S, Sato Y, Isobe T, Yukawa M, Murata K (2007) Complete nucleotide sequences of the mitochondrial genomes of two avian malaria protozoa, Plasmodium gallinaceum and Plasmodium juxtanucleare. Parasitol Res 100:661–664

    Article  PubMed  Google Scholar 

  • Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Brocal V, Clark CG (2008) Analysis of two genomes form the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content and genome organization. Mol Biol Evol 25:2475–2482

    Article  PubMed  Google Scholar 

  • Pérez-Brocal V, Shahar-Golan R, Clark CG (2010) A linear molecule with two large inverted repeats: the mitochondrial genome of the stramenopile Proteromonas lacertae. Genome Biol Evol 2:257–266

    Article  PubMed  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    Article  CAS  Google Scholar 

  • Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, van der Giezen M, Rogers MB, Allen JF (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105:10061–10066

    Article  PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Ibrahim IM, Jelicic B, Tomasic A, Fulgosi H, Allen JF (2010) Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol

    Google Scholar 

  • Race HL, Herrmann RG, Martin W (1999) Why have organelles retained genomes? Trends Genet 15:364–370

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ, Clark CG, Doolittle WF (1996) A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci USA 93:14618–14622

    Article  PubMed  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274

    Article  CAS  Google Scholar 

  • Simpson AG, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Article  PubMed  CAS  Google Scholar 

  • Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18:580–585

    Article  PubMed  CAS  Google Scholar 

  • Stechmann A, Tsaousis AD, Hamblin KA, van der Giezen M, Pérez-Brocal V, Clark CG (2009) The Blastocystis mitochondrion-like organelles. In: Clark CG, Adam RD, Johnson PJ (eds) Anaerobic parasitic protozoa: genomics and molecular biology. Horizon Scientific Press, Norwich, pp 205–219

    Google Scholar 

  • Tarasenko VI, Garnik EY, Shmakov VN, Konstantinov YM (2009) Induction of Arabidopsis gdh2 gene expression during changes in redox state of the mitochondrial respiratory chain. Biochemistry (Mosc) 74:47–53

    Article  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, León-Avila G, Sánchez L, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Turner G, Müller M (1983) Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritrichomonas foetus. J Parasitol 69:234–236

    Article  PubMed  CAS  Google Scholar 

  • van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231

    Article  PubMed  Google Scholar 

  • von Heijne G (1986) Why mitochondria need a genome. FEBS Lett 198:1–4

    Article  Google Scholar 

  • von Heijne G, Segrest JP (1987) The leader peptides from bacteriorhodopsin and halorhodopsin are potential membrane-spanning amphipathic helices. FEBS Lett 213:238–240

    Article  Google Scholar 

  • Vossbrinck CR, Maddox TJ, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Article  PubMed  CAS  Google Scholar 

  • Wallin IE (1923) The mitochondria problem. Am Nat 57:255–261

    Article  Google Scholar 

  • Wawrzyniak I, Roussel M, Diogen M, Couloux A, Texier C, Tan KSW, Vivarès C, Delbac F, Winckler P, El Alaoiu H (2008) Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol 38:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Wilson EB (1925) The cell in development and heredity. The Macmillan Company, New York

    Google Scholar 

  • Wilson SB, Davidson GS, Thomson LM, Pearson CK (1996) Redox control of RNA synthesis in potato mitochondria. Eur J Biochem 242:81–85

    Article  PubMed  CAS  Google Scholar 

  • Winkler HH, Neuhaus HE (1999) Non-mitochondrial ATP transport. Trends Biochem Sci 24:64–68

    Article  PubMed  CAS  Google Scholar 

  • Wrzaczek M, Brosche M, Salojarvi J, Kangasjarvi S, Idanheimo N, Mersmann S, Robatzek S, Karpinski S, Karpinska B, Kangasjarvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95

    Article  PubMed  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JFA gratefully acknowledges a research grant from The Leverhulme Trust and MvdG is grateful for the continuous support from the University of Exeter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark van der Giezen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Paula, W.B.M., Allen, J.F., van der Giezen, M. (2012). Mitochondria, Hydrogenosomes and Mitosomes in Relation to the CoRR Hypothesis for Genome Function and Evolution. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_5

Download citation

Publish with us

Policies and ethics