Skip to main content

A Dynamic Sliding Window Approach for Activity Recognition

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 6787)

Abstract

Human activity recognition aims to infer the actions of one or more persons from a set of observations captured by sensors. Usually, this is performed by following a fixed length sliding window approach for the features extraction where two parameters have to be fixed: the size of the window and the shift. In this paper we propose a different approach using dynamic windows based on events. Our approach adjusts dynamically the window size and the shift at every step. Using our approach we have generated a model to compare both approaches. Experiments with public datasets show that our method, employing simpler models, is able to accurately recognize the activities, using fewer instances, and obtains better results than the approaches used by the datasets authors.

Keywords

  • Human Activity Recognition
  • Sliding Window
  • Sensor Networks
  • Wearable Systems
  • Ubiquitous Computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22362-4_19
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-22362-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Chawla, N.: Data mining for imbalanced datasets: An overview. In: Data Mining and Knowledge Discovery Handbook, pp. 875–886 (2010)

    Google Scholar 

  3. Frank, E., Witten, I.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151. Citeseer (1998)

    Google Scholar 

  4. Gu, T., Wu, Z., Tao, X., Pung, H., Lu, J.: epSICAR: An Emerging Patterns based approach to sequential, interleaved and Concurrent Activity Recognition. In: Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, pp. 1–9. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  5. Hall, M., Smith, L.: Practical feature subset selection for machine learning. Computer Science 98, 4–6 (1998)

    Google Scholar 

  6. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, p. 163. ACM, New York (2005)

    Google Scholar 

  7. Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition 41(6), 2010–2024 (2008)

    CrossRef  Google Scholar 

  8. Kasteren, T., Athanasios, N., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9. ACM, New York (2008)

    Google Scholar 

  9. Logan, B., Healey, J., Philipose, M., Tapia, E., Intille, S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  10. Modayil, J., Bai, T., Kautz, H.: Improving the recognition of interleaved activities. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 40–43. ACM, New York (2008)

    CrossRef  Google Scholar 

  11. Ortiz, J., García, A., Borrajo, D.: A Relational Learning Approach to Activity Recognition from Sensor Readings. In: 4th International IEEE Conference Intelligent Systems, IS 2008, vol. 3 (2008)

    Google Scholar 

  12. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Ninth IEEE International Symposium on Wearable Computers, pp. 44–51 (2005)

    Google Scholar 

  13. Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  14. Stikic, M., Huynh, T., Van Laerhoven, K., Schiele, B.: ADL recognition based on the combination of RFID and accelerometer sensing. In: 2nd International Conference on Pervasive Computing Technologies for Healthcare (2008)

    Google Scholar 

  15. Tapia, E., Intille, S., Larson, K.: Activity Recognition in the Home Setting Using Simple and Ubiquitous Sensors. LNCS, pp. 158–175 (2004)

    Google Scholar 

  16. Van Kasteren, T., Englebienne, G., Kröse, B.: Towards a Consistent Methodology for Evaluating Activity Recognition Model Performance

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortiz Laguna, J., Olaya, A.G., Borrajo, D. (2011). A Dynamic Sliding Window Approach for Activity Recognition. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds) User Modeling, Adaption and Personalization. UMAP 2011. Lecture Notes in Computer Science, vol 6787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22362-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22362-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22361-7

  • Online ISBN: 978-3-642-22362-4

  • eBook Packages: Computer ScienceComputer Science (R0)