EmotiNet: A Knowledge Base for Emotion Detection in Text Built on the Appraisal Theories

  • Alexandra Balahur
  • Jesús M. Hermida
  • Andrés Montoyo
  • Rafael Muñoz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6716)


The automatic detection of emotions is a difficult task in Artificial Intelligence. In the field of Natural Language Processing, the challenge of automatically detecting emotion from text has been tackled from many perspectives. Nonetheless, the majority of the approaches contemplated only the word level. Due to the fact that emotion is most of the times not expressed through specific words, but by evoking situations that have a commonsense affective meaning, the performance of existing systems is low. This article presents the EmotiNet knowledge base – a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. The core of the resource is built from a set of self-reported affective situations and extended with external sources of commonsense knowledge on emotion-triggering concepts. The results of the preliminary evaluations show that the approach is appropriate for capturing and storing the structure and the semantics of real situations and predict the emotional responses triggered by actions presented in text.


EmotiNet emotion detection emotion ontology knowledge base appraisal theories self-reported affect action chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strapparava, C., Mihalcea, R.: Semeval 2007 Task 14: Affective Text. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), Sattelite Workshop to ACL 2007, Prague, pp. 70–74 (June 2007)Google Scholar
  2. 2.
    Pennebaker, J.W., Mehl, M.R., Niederhoffer, K.: Psychological aspects of natural language use: Our words, our selves. Annual Review of Psychology 54, 547–577 (2003)CrossRefGoogle Scholar
  3. 3.
    Balahur, A., Montoyo, A.: Applying a Culture Dependent Emotion Triggers Database for Text Valence and Emotion Classification. In: Proceedings of the AISB 2008 Convention “Communication, Interaction and Social Intelligence” (2008)Google Scholar
  4. 4.
    Balahur, A., Steinberger, R.: Rethinking Opinion Mining in Newspaper Articles: from Theory to Practice and Back. In: Proceedings of the First Workshop on Opinion Mining and Sentiment Analysis, WOMSA 2009 (2009)Google Scholar
  5. 5.
    Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods and Their Applications. IEEE Transactions on Affective Computing 1(1) (January-June 2010)Google Scholar
  6. 6.
    Scherer, K.: Appraisal Theory. Handbook of Cognition and Emotion. John Wiley & Sons Ltd., Chichester (1999)Google Scholar
  7. 7.
    Liu, H., Singh, P.: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT Technology Journal 22 (2004)Google Scholar
  8. 8.
    Chklovski, T., Pantel, P.: VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations. In: Proceedings of EMNLP 2004 (2004)Google Scholar
  9. 9.
    Picard, R.: Affective computing, Technical report, MIT Media Laboratory (1995)Google Scholar
  10. 10.
    Dyer, M.: Emotions and their computations: three computer models. Cognition and Emotion 1, 323–347 (1987)CrossRefGoogle Scholar
  11. 11.
    Subasic, P., Huettner, A.: Affect Analysis of text using fuzzy semantic typing. IEEE Trasactions on Fuzzy System 9, 483–496 (2000)CrossRefGoogle Scholar
  12. 12.
    Strapparava, C., Valitutti, A.: Wordnet-affect: an affective extension of WordNet. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, LREC 2004 (2004)Google Scholar
  13. 13.
    Esuli, A., Sebastiani, F.: Determining the semantic orientation of terms through gloss analysis. In: Proceedings of CIKM 2005 (2005)Google Scholar
  14. 14.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of EMNLP 2003 (2003)Google Scholar
  15. 15.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP 2002 (2002)Google Scholar
  16. 16.
    Danisman, T., Alpkocak, A.: Feeler: Emotion Classification of Text Using Vector Space Model. In: Proceedings of the AISB Convention, “Communication, Interaction and Social Intelligence” (2008)Google Scholar
  17. 17.
    Mei Lee, S.Y., Chen, Y., Huang, C.-R.: Cause Event Representations of Happiness and Surprise. In: Proceedings of PACLIC 2009 (2009)Google Scholar
  18. 18.
    Liu, H., Lieberman, H., Selker, T.: A Model of Textual Affect Sensing Using Real-World Knowledge. In: Proceedings of IUI 2003 (2003)Google Scholar
  19. 19.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: Affective Space: Blending Common Sense and Affective Knowledge to Perform Emotive Reasoning. In: Proceedings of the 1st Workshop on Opinion Mining and Sentiment Analysis, WOMSA (2009)Google Scholar
  20. 20.
    De Rivera, J.: A structural theory of the emotions. Psychological Issues 10(4) (1977); Monograph 40Google Scholar
  21. 21.
    Frijda, N.: The emotions. Cambridge University Press, Cambridge (1986)Google Scholar
  22. 22.
    Ortony, A., Clore, G.L., Collins, A.: The cognitive structure of emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  23. 23.
    Johnson-Laird, P.N., Oatley, K.: The language of emotions: An analysis of a semantic field. Cognition and Emotion 3, 81–123 (1989)CrossRefGoogle Scholar
  24. 24.
    Scherer, K.R.: Studying the Emotion-Antecedent Appraisal Process: An Expert System Approach. Cognition and Emotion 7(3/4) (1993)Google Scholar
  25. 25.
    Martin, J.R., White, P.R.: Language of Evaluation: Appraisal in English. Palgrave Macmillan, Basingstoke (2005)CrossRefGoogle Scholar
  26. 26.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  27. 27.
    Suchanek, F., Kasnei, G., Weikum, G.: YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia. In: Proceedings of WWW (2007)Google Scholar
  28. 28.
    Pantel, P., Ravichandran, D.: Automatically Labeling Semantic Classes. In: Proceedings of HLT/NAACL 2004, Boston, MA, pp. 321–328 (2004)Google Scholar
  29. 29.
    Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of ACL (1999)Google Scholar
  30. 30.
    Brin: Extracting patterns and relations from the World-Wide Web. In: Proceedings on the 1998 International Workshop on Web and Databases (1998)Google Scholar
  31. 31.
    Agichtein, E., Gravano, L.: Snowball: Extracting Relations from Large Plain-Text Collections. In: Proceedings of the 5th ACM International Conference on Digital Libraries, ACM DL (2000)Google Scholar
  32. 32.
    Grassi, M.: Developing HEO Human Emotions Ontology. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds.) BioID MultiComm2009. LNCS, vol. 5707, pp. 244–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Studer, R., Benjamins, R.V., Fensel, D.: Knowledge engineering: Principles and methods. Data & Knowledge Engineering 25(1-2), 161–197 (1998)CrossRefzbMATHGoogle Scholar
  34. 34.
    Moreda, P., Navarro, B., Palomar, M.: Corpus-based semantic role approach in information retrieval. Data Knowl. Eng. (DKE) 61(3), 467–483 (2007)CrossRefGoogle Scholar
  35. 35.
    Scherer, K., Wallbott, H.: The ISEAR Questionnaire and Codebook. Geneva Emotion Research Group (1997)Google Scholar
  36. 36.
    Plutchik, R.: The Nature of Emotions. American Scientist 89, 344 (2001)CrossRefGoogle Scholar
  37. 37.
    Parrott, W.: Emotions in Social Psychology. Psychology Press, Philadelphia (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandra Balahur
    • 1
  • Jesús M. Hermida
    • 1
  • Andrés Montoyo
    • 1
  • Rafael Muñoz
    • 1
  1. 1.Department of Software and Computing SystemsUniversity of AlicanteAlicanteSpain

Personalised recommendations