State Complexity Research and Approximation

  • Sheng Yu
  • Yuan Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


A number of basic questions concerning the state complexity research are discussed, which include why many basic problems weren’t studied earlier, whether there is a general algorithm for state complexity, and whether there is a new approach in this area of research. The new concept of state complexity approximation is also discussed. We show that this new concept can be used to obtain good results when the exact state complexities are difficult to find.


State Complexity Regular Language Combine Operation Descriptional Complexity Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string automata representation. Theoretical Computer Science 387(2), 93–102 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. The MIT Press and McGraw-Hill, Massachusetts (1990)zbMATHGoogle Scholar
  3. 3.
    Ellul, K.: Descriptional complexity measures of regular languages, Master’s Thesis, University of Waterloo, Ontario (2002)Google Scholar
  4. 4.
    Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined operations. Theoretical Computer Science 410(35), 3272–3280 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test development - based on finite state machine (FSM) models. IEEE Transactions on Software Engineering 17(6), 591–603 (1991)CrossRefGoogle Scholar
  6. 6.
    Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gao, Y., Yu, S.: State complexity approximation. In: Proceedings of Descriptional Complexity of Formal Systems, pp. 163–174 (2009)Google Scholar
  8. 8.
    Garey, M.R., Graham, R.L., Ullman, J.D.: Worst-case analysis of memory allocation algorithms. In: Proceedings of the 4th Annual ACM Symposium on the Theory of Computing, pp. 143–150 (1972)Google Scholar
  9. 9.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. International Journal of Foundations Computer Science 14, 1087–1102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 162–172. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  12. 12.
    Johnson, D.S.: Fast allocation algorithms. In: Proceedings of the 13th Annual IEEE Symposium on Switching and Automata Theory, pp. 144–154 (1972)Google Scholar
  13. 13.
    Johnson, D.S.: Near-optimal bin packing algorithms, PhD Dissertation, Massachusetts Institute of Technology, Cambridge, MA (1993)Google Scholar
  14. 14.
    Kiraz, G.A.: Compressed storage of sparse finite-state transducers. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, p. 109. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kibernetiki 9, 321–326 (1963) (in Russian)Google Scholar
  16. 16.
    Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (in Russian); English translation: Soviet Math. Dokl. 11, 1372–1375 (1970)MathSciNetGoogle Scholar
  17. 17.
    Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20, 1211–1214 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall, New York (1994)zbMATHGoogle Scholar
  19. 19.
    Rumbaugh, J., Jacobson, I., Booch, G.: The United Modeling Language Reference Manual. Addison-Wesley, Reading (1999)Google Scholar
  20. 20.
    Salomaa, A.: Theory of automata. Pergamon Press, Oxford (1969)zbMATHGoogle Scholar
  21. 21.
    Salomaa, A., Salomaa, K., Yu, S.: Undecidability of the state complexity of composed regular operations. In: Proceedings of LATA (2011) (to be published)Google Scholar
  22. 22.
    Salomaa, K., Yu, S.: Synchronization Expressions with Extended Join Operation. Theoretical Computer Science 207, 73–88 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383(2-3), 140–152 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. International Journal of Foundations of Computer Science 18(4), 683–698 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, vol. 1, pp. 41–110. Springer, New York (1997)CrossRefGoogle Scholar
  26. 26.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sheng Yu
    • 1
  • Yuan Gao
    • 1
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations