Advertisement

On the Representability of Line Graphs

  • Sergey Kitaev
  • Pavel Salimov
  • Christopher Severs
  • Henning Úlfarsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

A graph G = (V,E) is representable if there exists a word W over the alphabet V such that letters x and y alternate in W if and only if (x,y) ∈ E for each x ≠ y. Such a W is called a word-representant of G. Note that in this paper we use the term graph to mean a finite, simple graph, even though the definition of representable is applicable to more general graphs.

Keywords

Line Graph Simple Graph General Graph Circle Graph External Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Halldórsson, M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in words. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 436–437. Springer, Heidelberg (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Halldórsson, M., Kitaev, S., Pyatkin, A.: On representable graphs, semi-transitive orientations, and the representation numbers, arXiv:0810.0310v1 (math.CO) (2008)Google Scholar
  3. 3.
    Halldórsson, M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in words. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 436–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Kitaev, S., Pyatkin, A.: On representable graphs. Automata, Languages and Combinatorics 13, 1, 45–54 (2008)Google Scholar
  5. 5.
    Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic graphs. Order (2008), doi:10.1007/s11083-008-9083-7Google Scholar
  6. 6.
    van Rooij, A.C.M., Wilf, H.S.: M van Rooij and H.S. Wilf. The interchange graph of a finite graph. Acta Mathematica Academiae Scientiarum Hungaricae 16, 263–269 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergey Kitaev
    • 1
    • 2
  • Pavel Salimov
    • 1
  • Christopher Severs
    • 1
  • Henning Úlfarsson
    • 1
  1. 1.School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Department of Computer and Information SciencesUniversity of StrathclydeGlasgowUK

Personalised recommendations