Inference of Residual Finite-State Tree Automata from Membership Queries and Finite Positive Data

  • Anna Kasprzik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


The area of Grammatical Inference centers on learning algorithms: Algorithms that infer a description (e.g., a grammar or an automaton) for an unknown formal language from given information in finitely many steps. Various conceivable learning settings have been outlined, and based on those a range of algorithms have been developed. One of the language classes studied most extensively with respect to its algorithmical learnability is the class of regular string languages.


  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundamentae Informaticae 51, 339–368 (2002)MathSciNetMATHGoogle Scholar
  3. 3.
    Angluin, D.: A note on the number of queries needed to identify regular languages. Information and Control 51(1), 76–87 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science 76(2-3), 223–242 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Besombes, J., Marion, J.-Y.: Learning tree languages from positive examples and membership queries. Theoretical Computer Science 382, 183–197 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSA. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 348–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: Online Proceedings of IJCAI, vol 21 (2009)Google Scholar
  9. 9.
    Carme, J., Gilleron, R., Lemay, A., Terlutte, A., Tommasi, M.: Residual finite tree automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 171–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anna Kasprzik
    • 1
  1. 1.FB IV (Theoretical Computer Science)University of TrierGermany

Personalised recommendations