Advertisement

From Linear Partitions to Parallelogram Polyominoes

  • Roberto Mantaci
  • Paolo Massazza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

We provide a bijection between parallelogram polyominoes and suitable pairs of linear partitions. This lets us design a CAT (Constant Amortized Time) algorithm for generating all parallelogram polyominoes of size n using \(O(\sqrt n)\) space.

Keywords

Polyominoes Exhaustive generation CAT algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcucci, E., Frosini, A., Rinaldi, S.: Direct-convex polyominoes: ECO method and bijective results. In: Brak, R., Foda, O., Greenhill, C., Guttman, T., Owczarek, A. (eds.) Proceedings of Formal Power Series and Algebraic Combinatorics 2002, Melbourne (2002)Google Scholar
  2. 2.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comp. Sci. 155(2), 321–347 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO:a methodology for the enumeration of combinatorial objects. J. of Diff. Eq. and App. 5, 435–490 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bousquet-Mélou, M.: A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154, 1–25 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Castiglione, G., Vaglica, R.: Recognizable Picture Languages and Polyominoes. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 160–171. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    De Carli, F., Frosini, A., Rinaldi, S., Vuillon, L.: On the Tiling System Recognizability of Various Classes of Convex Polyominoes. Ann. Comb. 13, 169–191 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Delest, M., Dubernard, J.P., Dutour, I.: Parallelogram Polyominoes and Corners. J. Symb. Comp. 20, 503–515 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Delest, M., Viennot, X.G.: Algebraic languages and polyominoes enumeration. Theoret. Comp. Sci. 34, 169–206 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumeration of various classes of convex polyominoes. Electronic Journal of Combinatorics 11, 60 (2004)Google Scholar
  10. 10.
    Del Lungo, A., Mirolli, M., Pinzani, R., Rinaldi, S.: A Bijection for Directed-Convex Polyominoes. In: Proc. of DM-CCG 2001, Discrete Mathematics and Theoretical Computer Science AA, pp. 133–144 (2001)Google Scholar
  11. 11.
    Golomb, S.W.: Checker Boards and Polyominoes. The American Mathematical Monthly 61, 675–682 (1954)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theoret. Comp. Sci. 283(1), 223–242 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Massazza, P.: A CAT algorithm for sand piles. PU.M.A. 19(2-3), 147–158 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Massazza, P., Radicioni, R.: A CAT algorithm for the exhaustive generation of ice piles. RAIRO Theoretical Informatics and Applications 44, 525–543 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Massazza, P., Radicioni, R.: On the Exhaustive Generation of Symmetric Sand Piles. In Proc. of GASCom 2010, Montréal, September 2-4 (2010)Google Scholar
  16. 16.
    Ollinger, N.: Tiling the Plane with a Fixed Number of Polyominoes. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 638–647. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Pergola, E., Sulanke, R.A.: Schröder Triangles, Paths, and Parallelogram Polyominoes. Journal of Integer Sequences, 1 Article 98.1.7 (1998) Google Scholar
  18. 18.
    Polya, G.: On the number of certain lattice polygons. J. Comb. Theory 6, 102–105 (1969)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberto Mantaci
    • 1
  • Paolo Massazza
    • 2
  1. 1.LIAFA, CNRS UMR 7089Université Paris Diderot - Paris 7, Case 7014Paris Cedex 13France
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi dell’InsubriaVareseItaly

Personalised recommendations