Advertisement

Chop Operations and Expressions: Descriptional Complexity Considerations

  • Markus Holzer
  • Sebastian Jakobi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

The chop or fusion operation was recently introduced in [S. A. Babu, P. K. Pandya: Chop Expressions and Discrete Duration Calculus. Modern Applications of Automata Theory, World Scientific, 2010], where a characterization of regular languages in terms of chop expressions was shown. Simply speaking, the chop or fusion of two words is a concatenation were the touching letters are coalesced, if both letters are equal; otherwise the operation is undefined. We investigate the descriptional complexity of the chop operation and its iteration for deterministic and nondeterministic finite automata as well as for regular expressions. In most cases tight bounds are shown. Moreover, we also consider the conversion problem between finite automata, regular expressions, and chop expressions. Again, for most conversions we get tight bounds in order of magnitude. It is worth mentioning that regular expressions can be transformed into equivalent chop expressions of polynomial size, but chop expressions can be exponentially more succinct than regular expressions.

Keywords

Regular Expression Regular Language Tight Bound Automaton Theory Polynomial Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babu, S.A., Pandya, P.K.: Chop expressions and discrete duration calculus. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. IISc research Monographs Series, vol. 2. World Scientific, Singapore (2010)Google Scholar
  2. 2.
    Birget, J.-C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Comput. C-12(2), 67–76 (1963)Google Scholar
  4. 4.
    Cărăuşu, A., Păun, G.: String intersection and short concatenation. Rev. Roumaine Math. Pures Appl. 26, 713–726 (1981)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cohen, R.S.: Star height of certain families of regular events. J. Comput. System Sci. 4(3), 281–297 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Domaratzki, M.: Minimality in Template-Guided Recombination. Inform. and Comput. 207, 1209–1220 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harel, D., Peleg, D.: Process logic with regular formulas. Theoret. Comput. Sci. 38, 307–322 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. J. Comput. System Sci. 12(2), 134–146 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gelade, W., Neven, F.: Succinctness of complement and intersection of regular expressions. In: STACS, Bordeaux, France, pp. 325–336. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2008)Google Scholar
  10. 10.
    Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expression size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Gruber, H., Holzer, M.: Language operations with regular expressions of polynomial size. Theoret. Comput. Sci. 410(35), 3281–3289 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hashiguchi, K.: Algorithms for determining the relative star height and star height. Inform. Comput. 78(2), 124–169 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hashiguchi, K., Honda, N.: Homomorphisms that preserve star height. Inform. Comput. 30(3), 247–266 (1976)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Holzer, M., Jakobi, S.: State complexity of chop operations on unary and finite languages (2011) (in preparation)Google Scholar
  16. 16.
    Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. In: AFL, Debrecen, Hungary (to appear, 2011)Google Scholar
  17. 17.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  19. 19.
    Ito, M., Lischke, G.: Generalized periodicity and primitivity. Math Logic Q 53, 91–106 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kallas, J., Kufleitner, M., Lauser, A.: First-order fragments with successor over infinite words. In: STACS, Dortmund, Germany, pp. 356–367. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2011)Google Scholar
  21. 21.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Dokl. 11, 1373–1375 (1970)zbMATHGoogle Scholar
  22. 22.
    Mateescu, A., Salomaa, A.: Parallel composition of words with re-entrant symbols. An. Univ. Bucuresti, Mat.-Inform. 45, 71–80 (1996)MathSciNetGoogle Scholar
  23. 23.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT, pp. 188–191. IEEE Computer Society Press, Los Alamitos (1971)Google Scholar
  24. 24.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20, 1211–1219 (1971)Google Scholar
  25. 25.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rich, E.A.: Automata, Computability, and Complexity: Theory and Applications. Prentice Hall, Englewood Cliffs (2007)Google Scholar
  27. 27.
    Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Thompson, K.: Regular expression search algorithm. Com. ACM 11(6), 419–422 (1968)CrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Holzer
    • 1
  • Sebastian Jakobi
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations