Self-organization in Cellular Automata: A Particle-Based Approach

  • Benjamin Hellouin de Menibus
  • Mathieu Sablik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


For some classes of cellular automata, we observe empirically a phenomenon of self-organization: starting from a random configuration, regular strips separated by defects appear in the space-time diagram. When there is no creation of defects, all defects have the same direction after some time. In this article, we propose to formalise this phenomenon. Starting from the notion of propagation of defect by a cellular automaton formalized in [Piv07b, Piv07a], we show that, when iterating the automaton on a random configuration, defects in one direction only remain asymptotically.


Cellular Automaton Cellular Automaton Homogeneous Region Velocity Function Local Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boccara, N., Nasser, J., Roger, M.: Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. Phys. Rev. A 44(2), 866–875 (1991)CrossRefGoogle Scholar
  2. 2.
    Boyer, L., Poupet, V., Theyssier, G.: On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 190–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Eloranta, K.: The dynamics of defect ensembles in one-dimensional cellular automata. Journal of Statistical Physics 76, 1377–1398 (1994), doi:10.1007/BF02187067MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fisch, R.: The one-dimensional cyclic cellular automaton: A system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics. Journal of Theoretical Probability 3, 311–338 (1990), doi:10.1007/BF01045164MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular automata: An example. Physica D: Nonlinear Phenomena 103(1-4), 169–189 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Theory of Computing Systems 3(4), 320–375 (1969)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hurley, M.: Attractors in cellular automata. Ergodic Theory Dynam. Systems 10(1), 131–140 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hurley, M.: Ergodic aspects of cellular automata. Ergodic Theory Dynam. Systems 10(4), 671–685 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kůrka, P., Maass, A.: Limit sets of cellular automata associated to probability measures. Journal of Statistical Physics 100(5), 1031–1047 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kůrka, P.: Cellular automata with vanishing particules. Fundamenta Informaticae 58, 1–19 (2003)MathSciNetGoogle Scholar
  11. 11.
    Pivato, M.: Defect particle kinematics in one-dimensional cellular automata. Theoretical Computer Science 377(1-3), 205–228 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pivato, M.: Spectral domain boundaries in cellular automata. Fundamenta Informaticae 78(3), 417–447 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Theyssier, G.: Captive cellular automata. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 427–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Walters, P.: An introduction to ergodic theory. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  15. 15.
    Wolfram, S.: Computation theory of cellular automata. Communications in Mathematical Physics 96(1), 15–57 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Benjamin Hellouin de Menibus
    • 1
  • Mathieu Sablik
    • 1
  1. 1.Laboratoire d’Informatique FondamentaleUniversité de ProvenceMarseilleFrance

Personalised recommendations