Simulations over Two-Dimensional On-Line Tessellation Automata

  • Gérard Cécé
  • Alain Giorgetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

We study the notion of simulation over a class of automata which recognize 2D languages (languages of arrays of letters). This class of two-dimensional On-line Tessellation Automata (2OTA) accepts the same class of languages as the class of tiling systems, considered as the natural extension of classical regular word languages to the 2D case. We prove that simulation over 2OTA implies language inclusion. Even if the existence of a simulation relation between two 2OTA is shown to be a NP-complete problem in time, this is an important result since the inclusion problem is undecidable in general in this class of languages. Then we prove the existence of a unique maximal autosimulation relation in a given 2OTA and the existence of a unique minimal 2OTA which is simulation equivalent to this given 2OTA, both computable in polynomial time.

Keywords

Simulation 2D words Tiling systems Picture languages Picture automata 

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree Automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.: When Simulation Meets Antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A simulation-based approach. J. Log. Algebr. Program. 69(1-2), 93–121 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bozapalidis, S., Grammatikopoulou, A.: Recognizable Picture Series. Journal of Automata, Languages and Combinatorics 10(2/3), 159–183 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput. Logic 4(2), 181–206 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cécé, G., Giorgetti, A.: Simulations for a Class of Two-Dimensional Automata. Research Report RR-7425, INRIA (October 2010), http://hal.inria.fr/inria-00527077/en/
  8. 8.
    Cherubini, A., Pradella, M.: Picture Languages: From Wang Tiles to 2D Grammars. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 13–46. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, Beyond Words, vol. 3, pp. 215–267. Springer, Berlin (1997)Google Scholar
  10. 10.
    Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation acceptors. Inf. Sci. 13(2), 95–121 (1977)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lindgren, K., Moore, C., Nordahl, M.: Complexity of Two-Dimensional Patterns. Journal of Statistical Physics 91(5-6), 909–951 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lonati, V., Pradella, M.: Deterministic recognizability of picture languages with Wang automata. Discrete Math. & Theor. Comput. Sci. 12(4), 73–94 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Milner, R.: An Algebraic Definition of Simulation Between Programs. In: IJCAI, pp. 481–489 (1971)Google Scholar
  14. 14.
    The Smart Surface Project (2010), http://www.smartsurface.cnrs.fr/
  15. 15.
    Thomas, W.: Uniform and nonuniform recognizability. Theor. Comput. Sci. 292(1), 299–316 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gérard Cécé
    • 1
    • 2
  • Alain Giorgetti
    • 1
    • 3
  1. 1.LIFC - EA 4269 - University of Franche-ComtéFrance
  2. 2.Centre Numerica, 1 cours Leprince-RinguetMONTBELIARD CedexFrance
  3. 3.INRIA/CASSISBESANCON CedexFrance

Personalised recommendations