Generalized One-Unambiguity

  • Pascal Caron
  • Yo-Sub Han
  • Ludovic Mignot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

Brüggemann-Klein and Wood have introduced a new family of regular languages, the one-unambiguous regular languages, a very important notion in XML DTDs. A regular language L is one-unambiguous if and only if there exists a regular expression E over the operators of sum, catenation and Kleene star such that L(E) = L and the position automaton of E is deterministic. It implies that for a one-unambiguous expression, there exists an equivalent linear-size deterministic recognizer. In this paper, we extend the notion of one-unambiguity to weak one-unambiguity over regular expressions using the complement operator ¬. We show that a DFA with at most (n + 2) states can be computed from a weakly one-unambiguous expression and that it is decidable whether or not a given DFA recognizes a weakly one-unambiguous language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, N.: An O(n logn) implementation of the standard method for minimizing n-state finite automata. Inform. Process. Lett. 57(2), 65–69 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bray, T., Paoli, J., Sperberg-Mc Queen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0, 4th edn. (2006), http://www.w3.org/TR/2006/REC-xml-20060816
  3. 3.
    Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inform. Comput. 140, 229–253 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    Gelade, W.: Succinctness of regular expressions with interleaving, intersection and counting. Theor. Comput. Sci. 411(31-33), 2987–2998 (2010)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: Albers, S., Weil, P. (eds.) STACS. Dagstuhl Seminar Proceedings, vol. 08001, pp. 325–336 (2008)Google Scholar
  6. 6.
    Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53 (1961)CrossRefGoogle Scholar
  7. 7.
    Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196. Academic Press, New York (1971)Google Scholar
  8. 8.
    Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, Ann. Math. Studies, vol. 34, pp. 3–41. Princeton U. Press (1956)Google Scholar
  9. 9.
    McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for automata. IEEE Transactions on Electronic Computers 9, 39–57 (1960)CrossRefGoogle Scholar
  10. 10.
    Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies, pp. 129–153. Princeton Univ. Press, Princeton (1956)Google Scholar
  11. 11.
    Myhill, J.: Finite automata and the representation of events. WADD, TR-57-624, 112–137 (1957)Google Scholar
  12. 12.
    Nerode, A.: Linear automata transformation. In: Proceedings of AMS, vol. 9, pp. 541–544 (1958)Google Scholar
  13. 13.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. 3(2), 115–125 (1959)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal Caron
    • 1
  • Yo-Sub Han
    • 2
  • Ludovic Mignot
    • 1
  1. 1.LITISUniversité de RouenSaint-Étienne du Rouvray CedexFrance
  2. 2.Dept. of Computer ScienceYonsei UniversitySeoulRepublic of Korea

Personalised recommendations