Syntactic Complexity of Ideal and Closed Languages

  • Janusz Brzozowski
  • Yuli Ye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

The state complexity of a regular language is the number of states in the minimal deterministic automaton accepting the language. The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of regular languages is the worst-case syntactic complexity taken as a function of the state complexity n of languages in that class. We prove that nn − 1 is a tight upper bound on the complexity of right ideals and prefix-closed languages, and that there exist left ideals and suffix-closed languages of syntactic complexity nn − 1 + n − 1, and two-sided ideals and factor-closed languages of syntactic complexity nn − 2 + (n − 2)2n − 2 + 1.

Keywords

automaton closed complexity ideal language monoid regular reversal semigroup syntactic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bozapalidis, S., Kalampakas, A.: Recognizability of graph and pattern languages. Acta Inform. 42(8/9), 553–581 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bozapalidis, S., Kalampakas, A.: On the complexity of the syntax of tree languages. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 189–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bozapalidis, S., Kalampakas, A.: On the syntactic complexity of tree series. RAIRO-Theor. Inf. Appl. 44, 257–279 (2010)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brzozowski, J.: Quotient complexity of regular languages. In: Dassow, J., Pighizzini, G., Truthe, B. (eds.) Proceedings of the 11th International Workshop on Descriptional Complexity of Formal Systems, DCFS, pp. 25–42 (2009), Extended abstract at http://arxiv.org/abs/0907.4547
  5. 5.
    Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Heidelberg (2010), Full paper at http://arxiv.org/abs/0908.2083 CrossRefGoogle Scholar
  6. 6.
    Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 84–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages (October 2010), http://arxiv.org/abs/1010.3263
  8. 8.
    Dénes, J.: On transformations, transformation semigroups and graphs. In: Erdös, P., Katona, G. (eds.) Theory of Graphs. Proceedings of the Colloquium on Graph Theory held at Tihany, 1966, pp. 65–75. Akadémiai Kiado (1968)Google Scholar
  9. 9.
    Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. 327, 319–347 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hoyer, M.: Verallgemeinerung zweier sätze aus der theorie der substitutionengruppen. Math. Ann. 46(4), 539–544 (1895)CrossRefGoogle Scholar
  11. 11.
    Kalampakas, A.: The syntactic complexity of eulerian graphs. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 208–217. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transformations of a finite set (2003), http://arxiv.org/abs/math/0306416
  13. 13.
    Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transformations of a finite set. Internat. J. Found. Comput. Sci. 16(3), 547–563 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math. Dokl. 11 , 1373–1375 (1970)MATHGoogle Scholar
  15. 15.
    Myhill, J.: Finite automata and representation of events. Wright Air Development Center Technical Report 57–624 (1957)Google Scholar
  16. 16.
    Nerode, A.: Linear automaton transformations. Proc. Amer. Math. Soc. 9, 541–544 (1958)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Piccard, S.: Sur les fonctions définies dans les ensembles finis quelconques. Fund. Math. 24, 298–301 (1935)Google Scholar
  18. 18.
    Piccard, S.: Sur les bases du groupe symétrique et du groupe alternant. Commentarii Mathematici Helvetici 11(1), 1–8 (1938)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Restivo, A., Vaglica, R.: Automata with extremal minimality conditions. In: Gao, Y., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 399–410. Springer, Heidelberg (2010)Google Scholar
  20. 20.
    Salomaa, A.: A theorem concerning the composition of functions of several variables ranging over a finite set. J. Symbolic Logic 25, 203–208 (1960)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Salomaa, A.: Some completeness criteria for sets of functions over a finite domain. Ann. Univ. Turkuensis, Ser. AI 53 (1962)Google Scholar
  22. 22.
    Salomaa, A.: On basic groups for the set of functions over a finite domain. Ann. Acad. Scient. Fenn., Ser. A 338 (1963)Google Scholar
  23. 23.
    Salomaa, A.: Composition sequences for functions over a finite domain. Theoret. Comput. Sci. 292, 263–281 (2003)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sierpiński, X.: Sur les suites infinies de fonctions définies dans les ensembles quelconques. Fund. Math. 24, 209–212 (1935)Google Scholar
  25. 25.
    Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Janusz Brzozowski
    • 1
  • Yuli Ye
    • 2
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations