Skip to main content

An Efficient Approach for Video Action Classification Based on 3D Zernike Moments

  • Conference paper
Future Information Technology

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 185))

Abstract

Action recognition in video and still image is one of the most challenging research topics in pattern recognition and computer vision. This paper proposes a new method for video action classification based on 3D Zernike moments. These last ones aim to capturing both structural and temporal information of a time varying sequence. The originality of this approach consists to represent actions in video sequences by a three-dimension shape obtained from different silhouettes in the space-time volume. In fact, the given video is segmented in space-time volume. Then, silhouettes are extracted from obtained images of the video sequences volumes and 3D Zernike moments are computed for video, based on silhouettes volumes. Finally, least square version of SVM (LSSVM) classifier with extracted features is used to classify actions in videos. To evaluate the proposed approach, it was applied on a benchmark human action dataset. The experimentations and evaluations show efficient results in terms of action characterizations and classification. Further more, it presents several advantages such as simplicity and respect of silhouette movement progress in the video guaranteed by 3D Zernike moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zelnik-Manor, L., Irani, M.: Event-Based Analysis of Video, Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition. In: Proceedings of the 2001 IEEE Computer Society Conference, vol. 2, pp. 123–130 (2001)

    Google Scholar 

  2. Wu, X., Ngo, C.W., Hauptmann, A.G., Tan, H.K.: “Real-Time Near-Duplicate Elimination for Web Video Search with Content and Context. IEEE Transaction on Multimedia 11, 196–207 (2009)

    Article  Google Scholar 

  3. Efros, A., Breg, C., Mori, G., Malik, J.: Recognizing Action at a Distance. In: Computer Vision Proceedings. Ninth IEEE International Conference, vol. 2, pp. 726–733 (2003)

    Google Scholar 

  4. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  5. Gavrila, D.: The visual analysis of human movement: A survey. Computer Vision Image Understand. 73, 82–98 (1999)

    Article  MATH  Google Scholar 

  6. Cedras, C., Shah, M.: Motion-based recognition: A survey. Image Vision Computer 13, 129–155 (1995)

    Article  Google Scholar 

  7. Rao, C., Shah, M.: View-invariance in action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 316–321 (2001)

    Google Scholar 

  8. Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. IEEE Transaction on Pattern Analyses and Machine Intelligence 25, 814–827 (2003)

    Article  Google Scholar 

  9. Yacoob, Y., Black, M.: Parameterized modeling and recognition of activities. Computer Vision on Image Understand. 73, 232–247 (1999)

    Article  Google Scholar 

  10. Ali, A., Aggarwal, J.: Segmentation and recognition of continuous human activity. In: Procedure of Intelligent Workshop on Detection and Recognition of Events in Video, pp. 28–35 (2001)

    Google Scholar 

  11. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transaction on Pattern Analyses and Machine Intelligence 23, 257–267 (2001)

    Article  Google Scholar 

  12. Weinland, D., Ronfard, R., Boyer, E.: Motion history volumes for free viewpoint action recognition. Presented at the IEEE Workshop Modeling People and Human Interaction, pp. 87–89 (2005)

    Google Scholar 

  13. Gorelick, L.: al Actions as Space-Time Shapes. IEEE Transactions Pattern Analysis and Machine Intelligence 29, 2247–2253 (2007)

    Article  Google Scholar 

  14. Guo, K., Ishwar, P., Konrad, J.: Action Recognition in Video by Covariance Matching of Silhouette Tunnels. In: XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 299–306 (2009)

    Google Scholar 

  15. Kellokumpu, V., Pietikainen, M., Heikkila, J.: Human activity recognition using sequences of postures. In: IAPR Conference on Machine Vision Applications, p. 6570–6573 (2005)

    Google Scholar 

  16. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: Procedure International of Conference on Computer Vision, vol. 2, pp. 1808–1815 (2005)

    Google Scholar 

  17. Shutler, J.D., et al.: Statistical gait recognition via temporal moments. In: Image Analysis and Interpretation 4th IEEE Southwest Symposium, pp. 291–295 (2000)

    Google Scholar 

  18. Baccouche1, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Une approche neuronale pour la classification d’actions de sport par la prise en compte du contenu visuel et du mouvement dominant. In: Compression et Représentation des Signaux Audiovisuels (CORESA), pp. 25–30 (2010)

    Google Scholar 

  19. Tian, Y., Liu, Z., Yao, B., Zhang, Z., Huang, T.: Action Detection Using Multiple Spatial-Temporal Interest Point Features. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 340–345 (2010)

    Google Scholar 

  20. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machines. Neural Processing Letters 9(3), 293–300 (2002)

    Article  MATH  Google Scholar 

  21. Gestel, T.V., Suykens, A.K.: Benchmarking Least Squares Support Vector Machine Classifiers, Technical report of Internal Report 00-37 on ESAT-SISTA 54, 5–32 (2000)

    Google Scholar 

  22. Blank, M., Gorelick, L., Shechtman, M., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Transactions on pattern Analysis and Machine Intelligence 29, 2247–2253 (2005)

    Google Scholar 

  23. Green, R., Guan, L.: Quantifying and recognizing human movement patterns from monocular video images. IEEE Transaction Circuits on System Video Technologys 14, 179–190 (2004)

    Article  Google Scholar 

  24. Dhillon, C.H., Nowozin, P.S., Lampert, S.: Combining appearance and motion for human action classification in videos. In: Computer Vision and Pattern Recognition Workshops, pp. 22 – 29 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lassoued, I., Zagrouba, E., Chahir, Y. (2011). An Efficient Approach for Video Action Classification Based on 3D Zernike Moments. In: Park, J.J., Yang, L.T., Lee, C. (eds) Future Information Technology. Communications in Computer and Information Science, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22309-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22309-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22308-2

  • Online ISBN: 978-3-642-22309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics