Skip to main content

Horoball Hulls and Extents in Positive Definite Space

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6844)

Abstract

The space of positive definite matrices P(n) is a Riemannian manifold with variable nonpositive curvature. It includes Euclidean space and hyperbolic space as submanifolds, and poses significant challenges for the design of algorithms for data analysis. In this paper, we develop foundational geometric structures and algorithms for analyzing collections of such matrices. A key technical contribution of this work is the use of horoballs, a natural generalization of halfspaces for non-positively curved Riemannian manifolds. We propose generalizations of the notion of a convex hull and a centerpoint and approximations of these structures using horoballs and based on novel decompositions of P(n). This leads to an algorithm for approximate hulls using a generalization of extents.

Keywords

  • Riemannian Manifold
  • Euclidean Space
  • Convex Hull
  • Voronoi Diagram
  • Hyperbolic Space

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This research was supported in part by NSF awards SGER-0841185 and CCF-0953066 and a subaward to the University of Utah under NSF award 0937060 to CRA.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. JACM 51 (2004)

    Google Scholar 

  2. Arnaudon, M., Nielsen, F.: On Approximating the Riemannian 1-Center, arXiv:1101.4718v1 (2011)

    Google Scholar 

  3. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    CrossRef  Google Scholar 

  4. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine Learning 56(1), 209–239 (2004)

    CrossRef  MATH  Google Scholar 

  5. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  6. Billera, L., Holmes, S., Vogtmann, K.: Geometry of the Space of Phylogenetic Trees. Advances in Applied Mathematics 27(4), 733–767 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Bonnabel, S., Sepulchre, R.: Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J. on Matr. Anal. & App. 31(3), 1055–1070 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  9. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs. In: SoCG (2008)

    Google Scholar 

  10. Chepoi, V., Estellon, B.: Packing and covering δ-hyperbolic spaces by balls. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 59–73. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  11. Cowin, S.: The structure of the linear anisotropic elastic symmetries. Journal of the Mechanics and Physics of Solids 40, 1459–1471 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries. Journal of Approximation Theory 10, 227–236 (1974)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Dyer, R., Zhang, H., Möller, T.: Surface sampling and the intrinsic Voronoi diagram. In: SGP, pp. 1393–1402 (2008)

    Google Scholar 

  14. Eppstein, D.: Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition. ACM Transactions on Algorithms (TALG) 5 (2009)

    Google Scholar 

  15. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. Com. Vis. & Math. Methods Med. Biomed. Im. Anal, 87–98 (2004)

    Google Scholar 

  16. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45, S143–S152 (2009)

    CrossRef  Google Scholar 

  17. Gromov, M.: Hyperbolic groups. Essays in Group Theory 8, 75–263 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: FOCS (2006)

    Google Scholar 

  19. Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: SoCG (2000)

    Google Scholar 

  20. Meyer, G., Bonnabel, S., Sepulchre, R.: Regression on fixed-rank positive semidefinite matrices: a Riemannian approach, arXiv:1006.1288 (2010)

    Google Scholar 

  21. Moakher, M.: A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices. SIAM J. on Matr. Anal. & App. 26 (2005)

    Google Scholar 

  22. Moakher, M., Batchelor, P.G.: Symmetric positive-definite matrices: From geometry to applications and visualization. In: Visualization and Processing of Tensor Fields (2006)

    Google Scholar 

  23. Nesterov, Y., Todd, M.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. FoCM 2(4), 333–361 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Owen, M., Provan, J.: A Fast Algorithm for Computing Geodesic Distances in Tree Space, arXiv:0907.3942 (2009)

    Google Scholar 

  25. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. IJCV 66(1), 41–66 (2006)

    CrossRef  MATH  Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis, Cambridge (2004)

    Google Scholar 

  27. Smith, S.: Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Transactions on Signal Processing 53(5), 1610–1630 (2005)

    CrossRef  MathSciNet  Google Scholar 

  28. Vandereycken, B., Absil, P., Vandewalle, S.: A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank. status: submitted (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S. (2011). Horoball Hulls and Extents in Positive Definite Space. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)