Skip to main content

A Constant Factor Approximation Algorithm for Boxicity of Circular Arc Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

Abstract

Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel boxes in R k. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split graphs below O(n 0.5 − ε)-factor, for any ε > 0 in polynomial time unless NP = ZPP. Till date, there is no well known graph class of unbounded boxicity for which even an n ε-factor approximation algorithm for computing boxicity is known, for any ε < 1. In this paper, we study the boxicity problem on Circular Arc graphs - intersection graphs of arcs of a circle. We give a \((2+\frac{1}{k})\)-factor polynomial time approximation algorithm for computing the boxicity of any circular arc graph along with a corresponding box representation, where k ≥ 1 is its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model given, this can be improved to an additive 2-factor approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity is O(mn + n 2) in both these cases and in O(mn + kn 2) which is at most O(n 3) time we also get their corresponding box representations, where n is the number of vertices of the graph and m is its number of edges. The additive 2-factor algorithm directly works for any Proper Circular Arc graph, since computing an NCA model for it can be done in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abueida, A.A., Busch, A.H., Sritharan, R.: A min-max property of chordal bipartite graphs with applications. Graphs and Combinatorics 26(3), 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adiga, A., Babu, J., Chandran, L.S.: A constant factor approximation algorithm for boxicity of circular arc graphs. In: CoRR, abs/1102.1544 (February 2011), http://arxiv.org/abs/1102.1544

  3. Adiga, A., Bhowmick, D., Sunil Chandran, L.: The hardness of approximating the boxicity, cubicity and threshold dimension of a graph. Discrete Appl. Math. 158, 1719–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in weakly chordal graphs. Discrete Math. 266, 133–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandran, L.S., Das, A., Shah, C.D.: Cubicity, boxicity, and vertex cover. Discrete Mathematics 309(8), 2488–2496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cozzens, M.B.: Higher and multi-dimensional analogues of interval graphs. Ph.D. thesis, Department of Mathematics. Rutgers University, New Brunswick, NJ (1981)

    Google Scholar 

  7. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallai, T.: On directed paths and circuits. In: Erdös, P., Katona, G. (eds.) Theory of Graphs, pp. 115–118. Academic Press, New York (1968)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1(2), 216–227 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Appl. Math. 101, 157–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46, 313–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: A survey. Discrete Mathematics 309(18), 5618–5635 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazoit, F.: The branch-width of circular-arc graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 727–736. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301–310. Academic Press, New York (1969)

    Google Scholar 

  17. Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete Mathematics and Theoretical Computer Science 9, 127–136 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs. Ph.D. thesis. Princeton University (1984)

    Google Scholar 

  19. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Sundaram, R., Singh, K.S., Rangan, C.P.: Treewidth of circular-arc graphs. SIAM J. Discret. Math. 7, 647–655 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser. B 40, 9–20 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tucker, A.C.: Matrix characterizations of circular-arc graphs. Pacific J. of Mathematics 19, 535–545 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tucker, A.C.: Structure theorems for some circular-arc graphs. Discrete Mathematics 7(1,2), 167–195 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Alg. Disc. Meth. 3(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, C.W., Chen, G.H., Ma, T.H.: On the complexity of the -chain subgraph cover problem. Theor. Comput. Sci. 205(1-2), 85–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adiga, A., Babu, J., Chandran, L.S. (2011). A Constant Factor Approximation Algorithm for Boxicity of Circular Arc Graphs. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics