Skip to main content

Monitoring the Microbial Burden in Manned Space Stations

  • Chapter
  • First Online:

Abstract

The consequences of impaired immunity to adequately cope with microbial contamination increase the risk of infections in general. Especially in space, the consequences of an impaired immune system can further aggravate as astronauts face multiple stressors in an artificial environment with its own microbial population and dynamics. In this chapter, the knowledge of the environmental microbial burden in manned space stations and, in particular, the International Space Station ISS will be reviewed in terms of level and diversity. The implemented quality standards and monitoring strategies will be discussed in relation to the microbial burden and its impact on the crew’s well-being and ship safety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez B, Lopez MM, Biosca EG (2008) Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiol 154:3590–3598

    Article  CAS  Google Scholar 

  • Berry CA (1973) View of human problems to be addressed for long-duration space flights. Aerosp Med 44:1136–1146

    PubMed  CAS  Google Scholar 

  • Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302

    Article  PubMed  CAS  Google Scholar 

  • Brief RS, Bernath T (1988) Indoor pollution: guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation system. Appl Indust Hyg 3:5–10

    Article  CAS  Google Scholar 

  • Bruce RJ, Ott CM, Skuratov VM, Pierson DL (2005) Microbial surveillance of potable water sources of the International Space Station. SAE Trans 114:283–292

    Google Scholar 

  • Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the International Space Station. Microb Ecol 47:119–126

    Article  PubMed  CAS  Google Scholar 

  • Castro VA, Bruce RJ, Ott CM, Pierson DL (2006) The influence of microbiology on spacecraft design and controls: a historical perspective of the shuttle and international space station programs. In: International conference on environmental systems, Norfolk, 2006

    Google Scholar 

  • CEC (1993) Commission of the European Communities, biological particles in indoor environments. European Collaborative Action, indoor air quality and its impact on man, COST Project 613, Report No. 12, EUR 14988 EN. Luxembourg

    Google Scholar 

  • Cox CS (1995) Stability of airborne microbes and allergens. In: Cox CS, Wathes CM (eds) Bioaerosols handbook. CRC Press, Boca Raton, pp 77–99

    Google Scholar 

  • Dacarro C, Picco AM, Grisoli P, Rodolfi M (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95:904–912

    Article  PubMed  CAS  Google Scholar 

  • Dawson DJ, Sartory DP (2000) Microbiological safety of water. Br Med Bull 56:74–83

    Article  PubMed  CAS  Google Scholar 

  • Debus A (2006) The European standard on planetary protection requirements. Res Microbiol 157:13–18

    Article  PubMed  Google Scholar 

  • Duncan JM, Bogomolov VV, Castrucci F, Koike Y, Comtois JM, Sargsyan AE (2008) Organization and management of the International Space Station (ISS) multilateral medical operations. Acta Astronaut 63:1137–1147

    Article  Google Scholar 

  • Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Husman T (1996) Health effects of indoor-air microorganisms. Scand J Work Environ Health 22:5–13

    Article  PubMed  CAS  Google Scholar 

  • ISS MORD (2009) SSP 50260: ISS medical operations requirement document, Houston

    Google Scholar 

  • James JT, Parmet AJ, Pierson DL (2008) Aerospace toxicology and microbiology. In: Davis JR, Johnson R, Stepanek J, Fogarty JA (eds) Fundamentals of aerospace medicine, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 236–250

    Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

    Article  PubMed  Google Scholar 

  • Jenkins DR (1996) Space shuttle: the history of developing the National Space Transportation System. Motorbooks International, Minneapolis

    Google Scholar 

  • Lachance PA (1997) How HACCP started. Food Technol 51:35

    Google Scholar 

  • McAlister MB, Kulakov LA, O’Hanlon JF, Larkin MJ, Ogden KL (2002) Survival and nutritional requirements of three bacteria isolated from ultrapure water. J Ind Microbiol Biotechnol 29:75–82

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistance. In: Schwartz E (ed) Microbial megaplasmids, vol 11, Microbiology Monographs. Springer, Berlin, pp 209–238

    Chapter  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  • Morawska L (2006) Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16:335–347

    Article  PubMed  CAS  Google Scholar 

  • NASA (2005a) MR050L, Microbial analysis of ISS surfaces using the surface sampler kit (SSK), Houston

    Google Scholar 

  • NASA (2005b) MR051L, Microbial analysis of ISS water using the water microbiology kit (WMK) and the microbiology water analysis kit, Houston

    Google Scholar 

  • NASA (2005c) MR052L, Microbial analysis of ISS air using the microbial air sampler (MAS), Houston

    Google Scholar 

  • NASA (2006) SD-T-0251, Microbiological specification and testing procedure for foods which are not commercially sterile, Houston

    Google Scholar 

  • Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47:127–132

    Article  PubMed  CAS  Google Scholar 

  • Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12

    Article  PubMed  Google Scholar 

  • Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2:482–497

    Article  PubMed  CAS  Google Scholar 

  • Perchonok M, Douglas G (2008) Risk factor of an inadequate food system. In: Human research evidence book. National Aeronautics and Space Administration, Houston

    Google Scholar 

  • Sessa R, Di PM, Schiavoni G, Santino I, Altieri A, Pinelli S, Del PM (2002) Microbiological indoor air quality in healthy buildings. New Microbiol 25:51–56

    PubMed  CAS  Google Scholar 

  • Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91:525–532

    Article  PubMed  CAS  Google Scholar 

  • Straub JE, Plumlee DK, Schultz JR (2009) Chemical analysis results for potable water returned from ISS Expeditions 14 and 15. SAE Int J Aerosp 1:556–577

    Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  • Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009a) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57:640–648

    Article  PubMed  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009b) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeu­wenhoek 96:205–226

    Article  PubMed  Google Scholar 

  • Volodina E, Nagolkin A, Fedotov A (2003) Air cleaning device for destruction of microbes based on electroporation effect. In: Wirtanen G, Salo S (eds) 34th R3-Nordic Contamination Control Symposium, Turku, 2003, pp 199–204

    Google Scholar 

  • WHO (2008) World Health Organization: guidelines for drinking-water quality: incorporating 1st and 2nd addenda, vol 1, 3rd edn, Recommendations. WHO, Geneva

    Google Scholar 

  • Wingender J, Flemming HC (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49:277–286

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the COMICS and EXANAM projects. We are grateful to Duane L. Pierson (NASA, JSC) for critical reading and suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van Houdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Houdt, R., Leys, N. (2012). Monitoring the Microbial Burden in Manned Space Stations. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_22

Download citation

Publish with us

Policies and ethics