Towards More Expressive 2D Deterministic Automata

  • Violetta Lonati
  • Matteo Pradella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6807)

Abstract

REC defines an important class of picture languages that is considered a 2D analogous of regular languages. In this paper we recall some of the most expressive operational approaches to define deterministic subclasses of REC. We summarize their main characteristics and properties and try to understand if it is possible to combine their main features to define a larger deterministic subclass. We conclude by proposing a convenient generalization based on automata and study some of its formal properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Berlin (1997)CrossRefGoogle Scholar
  2. 2.
    Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation acceptors. Information Sciences 13, 95–121 (1977)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. International Journal Pattern Recognition and Artificial Intelligence, Special Issue on Parallel Image Processing 6, 241–256 (1992)CrossRefMATHGoogle Scholar
  4. 4.
    de Prophetis, L., Varricchio, S.: Recognizability of rectangular pictures by Wang systems. Journal of Automata, Languages and Combinatorics 2, 269–288 (1997)MathSciNetMATHGoogle Scholar
  5. 5.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Conference Record of 1967 Eighth Annual Symposium on Switching and Automata Theory, pp. 155–160. IEEE, Los Alamitos (1967)Google Scholar
  6. 6.
    Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Information Sciences 55, 99–121 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families within recognizable two-dimensional languages. Fundamenta Informaticae 98, 143–166 (2010)MathSciNetMATHGoogle Scholar
  9. 9.
    Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: A computational model for recognizable two-dimensional languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lonati, V., Pradella, M.: Snake-deterministic tiling systems. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 549–560. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Lonati, V., Pradella, M.: Picture recognizability with automata based on wang tiles. In: van Leeuwen, J., et al. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 576–587. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lonati, V., Pradella, M.: Deterministic recognizability of picture languages with Wang automata. Discrete Mathematics and Theoretical Computer Science 4, 73–94 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Lonati, V., Pradella, M.: Strategies to scan pictures with automata based on Wang tiles. R.A.I.R.O. Theoretical Informatics and Applications 44 (2010)Google Scholar
  14. 14.
    Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In: Nakamura, A., et al. (eds.) ICPIA 1992. LNCS, vol. 654, pp. 133–143. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Ito, A., Inoue, K., Takanami, I.: A note on three-way two-dimensional alternating Turing machines. Inf. Sci. 45, 1–22 (1988)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 203–210. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Violetta Lonati
    • 1
  • Matteo Pradella
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations