The Anatomy of a Multi-domain Search Infrastructure

  • Stefano Ceri
  • Alessandro Bozzon
  • Marco Brambilla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6757)

Abstract

Current search engines do not support queries that require a complex combination of information. Problems such as “Which theatre offers an at least-three-stars action movie in London close to a good Italian restaurant” can only be solved by asking multiple queries, possibly to different search engines, and then manually combining results, thereby performing “data integration in the brain.” While searching the Web is the preferred method for accessing information in everyday’s practice, users expect that search systems will soon be capable of mastering complex queries. However, combining information requires a drastic change of perspective: a new generation of search computing systems is needed, capable of going beyond the capabilities of current search engines. In this paper we show how search computing should open to modular composition, as many other kinds of software computations. We first motivate our work by describing our vision, and then describe how the challenges of multi-domain search are addressed by a prototype framework, whose internal “anatomy” is disclosed.

Keywords

Web information retrieval multi-domain query search computing software architecture modular decomposition 

References

  1. 1.
    Barbieri, D., Bozzon, A., Brambilla, M., Ceri, S., Pasini, C., Tettamanti, L., Vadacca, S., Volonterio, R., Zagorac, S.: Exploratory Multi-domain Search on Web Data Sources with Liquid Queries. In: ICWE 2011 Conference, Demo session, Paphos, Cyprus (June 2011)Google Scholar
  2. 2.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data on the Web. In: Proceedings WWW 2008, Beijing, China (2008)Google Scholar
  3. 3.
    Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-Domain Exploratory Search on the Web. In: WWW 2010, Raleigh, NC, pp. 161–170. ACM, New York (2010)Google Scholar
  4. 4.
    Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Vadacca, S.: Exploratory search in multi-domain information spaces with Liquid Query. In: WWW 2011 Conference, Demo session, (March 31, 2011)Google Scholar
  5. 5.
    Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Vadacca, S.: Exploratory search in multi-domain information spaces with Liquid Query. In: Bozzon, A., Brambilla, M., Ceri, S., Corcoglioniti, F., Fraternali, P., Vadacca, S. (eds.) Search Computing: Multi-domain Search on Ranked Data, ACM-Sigmod 2011 Conference, Demo session (June 2011)Google Scholar
  6. 6.
    Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the results of heterogeneous search engines. Inf. Syst. 33(7-8), 658–680 (2008)CrossRefGoogle Scholar
  7. 7.
    Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries on the Web. In: VLDB 2008, Auckland, NZ (2008)Google Scholar
  8. 8.
    Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing Up Search Services. IEEE Internet Computing 12(5), 16–23 (2008)CrossRefGoogle Scholar
  9. 9.
    Braga, D., Grossniklaus, M., Corcoglioniti, F., Vadacca, S.: Efficient Computation of Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 141–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Brambilla, M., Tettamanti, L.: Tools Supporting Search Computing Application Development. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 169–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Ceri, S., Brambilla, M. (eds.): Search Computing II. LNCS, vol. 6585. Springer, Heidelberg (March 2011)Google Scholar
  12. 12.
    Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS Book, vol. 5950. Springer, Heidelberg (March 2010) ISBN 978-3-642-12309-2Google Scholar
  13. 13.
    Danescu-Niculescu-Mizil, C., Broder, A.Z., Gabrilovich, E., Josifovski, V., Pang, B.: Competing for users’ attention: on the interplay between organic and sponsored search results. In: WWW 2010, Raleigh, NC, pp. 291–300. ACM, USA (2010)Google Scholar
  14. 14.
    Google: Fusion Tables (2009), http://tables.googlelabs.com/
  15. 15.
    Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4) (2008)Google Scholar
  16. 16.
    Parameswaran, A., Das Sarma, A., Polyzotis, N., Widom, J., GarciaMolina, H.: Human-Assisted Graph Search: It’s Okay to Ask Questions. In: PVLDB, vol. 4(5), pp. 267–278 (February 2011)Google Scholar
  17. 17.
    Rajaraman, A.: Kosmix: High Performance Topic Exploration using the Deep Web. In: VLDB 2009, Lyon, France (2009)Google Scholar
  18. 18.
    Suchanek, F., Bozzon, A., Della Valle, E., Campi, A.: Towards an Ontological Representation of Services in Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 101–112. Springer, Heidelberg (2011)Google Scholar
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefano Ceri
    • 1
  • Alessandro Bozzon
    • 1
  • Marco Brambilla
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanItaly

Personalised recommendations